首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
ZnS thin films were deposited on soda lime glass and aluminum substrates by close-spaced sublimation technique. The change in composition, structural and optical properties of the films was investigated as a function of the substrate temperature. The deposited films were stoichiometric and crystalline in nature having cubic structure oriented only along (1 1 1) plane. The energy band gap of the films deposited at the substrate temperature of 150, 250 and 350 °C was 3.52, 3.58 and 3.63 eV respectively. These films were then bombarded with 2-10 keV energy pulsed Ar+ beam and their electron yield was determined from impinging ion and emitted electron currents. The electron yield of ZnS films was much high as compared to the metals. The electron yield of ZnS films increased with energy of the incident ion and got saturated at about 8 keV. The most important result of this study was that the electron yield of ZnS films having same composition was different. Monte Carlo simulations performed to interpret these experimental findings showed that the dissimilar electron yields of ZnS films is due to the combined effect of energy band gap, surface barrier potential and density of the films.  相似文献   

2.
ZnS films have been deposited on glass substrates by close-spaced evaporation (CSE) technique. The films were grown at different temperatures in the range, 200-350 °C. The layers have been characterized with X-ray diffractometer (XRD), atomic force microscope (AFM), energy dispersive analysis of X-rays (EDAX) and optical spectrophotometer to evaluate the quality of the layers for photovoltaic applications. The studies showed that the optimum substrate temperature for the growth of ZnS layers was 300 °C. The films grown at these temperatures exhibited cubic structure with nearly stoichiometric composition. The AFM data revealed that the films had nano-sized grains with a grain size of ∼40 nm. The optical studies exhibited direct allowed transition with an energy band gap of 3.61 eV. The other structural and optical parameters such as lattice stress, dislocation density, refractive index and extinction coefficient were also evaluated. The temperature-dependent conductivity measured in the range, 303-523 K showed a change in the conduction mechanism at 120 °C. The activation energy values evaluated using the temperature dependence of electrical conductivity are 7 and 29 meV at low and high temperature regions, respectively.  相似文献   

3.
Chemical bath deposition of ZnS thin films from NH3/SC(NH2)2/ZnSO4 solutions has been studied. The effect of various process parameters on the growth and the film quality are presented. The influence on the growth rate of solution composition and the structural, optical properties of the ZnS thin films deposited by this method have been studied. The XRF analysis confirmed that volume of oxygen of the as-deposited film is very high. The XRD analysis of as-deposited films shows that the films are cubic ZnS structure. The XRD analysis of annealed films shows the annealed films are cubic ZnS and ZnO mixture structure. Those results confirmed that the as-deposited films have amorphous Zn(OH)2. SEM studies of the ZnS thin films grown on various growth phases show that ZnS film formed in the none-film phase is discontinuous. ZnS film formed in quasi-linear phase shows a compact and a granular structure with the grain size about 100 nm. There are adsorbed particles on films formed in the saturation phase. Transmission measurement shows that an optical transmittance is about 90% when the wavelength over 500 nm. The band gap (Eg) value of the deposited film is about 3.51 eV.  相似文献   

4.
In this work, we report the formation of CuInS2 thin films on glass substrates by heating chemically deposited multilayers of copper sulfide (CuS) and indium sulfide (In2S3) at 300 and 350 °C in nitrogen atmosphere at 10 Torr. CIS thin films were prepared by varying the CuS layer thickness in the multilayers with indium sulfide. The XRD analysis showed that the crystallographic structure of the CuInS2 (JCPDS 27-0159) is present on the deposited films. From the optical analysis it was estimated the band gap value for the CIS film (1.49 eV). The electrical conductivity varies from 3 × 10−8 to 3 Ω−1 cm−1 depending on the thickness of the CuS film. CIS films showed p-type conductivity.  相似文献   

5.
Effect of water vapor quantity at oxidation of undoped ZnS films on structural and luminescent properties of the obtained films was investigated. The films were deposited onto glass substrates by electron beam evaporation. ZnO-ZnS layers were prepared by thermal oxidization of ZnS films at 600 °C in dry or wet atmospheres. The films were characterized by X-ray diffraction, atomic force microscopy and photoluminescence spectroscopy. As-deposited ZnS films were sphalerite crystal structure. The “dry annealing” led to the ZnS phase transition from sphalerite to wurtzite structure and from ZnS to ZnO for a small fraction of the film. After the “wet annealing” the amount of ZnO phase with wurtzite structure growing along the 〈0 0 0 2〉 direction varied from 25% to 95% in dependence on the water vapor quantity. Photoluminescent spectrum at room temperature exhibits green emission with maximum at 2.4 eV. A strong influence of the water vapor on shape and intensity of the emission was observed. Photoluminescent spectra at 22 K consisted of two bands—high-energy band at 2.1-2.4 eV and low energy band at 1.7-1.8 eV. Location and intensity ratio depended on the preparation conditions.  相似文献   

6.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

7.
Room temperature deposition of PVP capped nanostructured NiO/Ni(OH)2 thin film, the morphological and optical characterizations by solution growth technique are reported. The nanostructured thin films which were deposited on optical glass substrates were annealed at different temperatures and then subjected to structural, morphological and optical characterizations. X-ray diffraction measurements of the films revealed that higher temperatures during the thermal treatment enhanced the crystallinity of the thin films. The SEM surface micrographs show non-interconnected uniformly deposited fibre-like structures with approximate lengths between 400 and 1200 nm. The optical band gap energy roughly decreased from about 2.7 eV to about 2.2 eV with thermal treatment. The absorbance of the thin films annealed at 300 and 400 °C was as high as 90% in the visible region of the electromagnetic spectrum. These materials could be useful in solar thermal conversion processes.  相似文献   

8.
ZnS thin films have been prepared by chemical bath deposition (CBD) technique onto glass substrates deposited at about 80 °C using aqueous solution of zinc sulfate hepta-hydrate, ammonium sulfate, thiourea, ammonia and hydrazine hydrate. Ammonia and hydrazine hydrate were used as complexing agents. The influence of the ratio of [Zn]/[S] on formation and properties of ZnS thin films has been investigated. The ratio of [Zn]/[S] was changed from 3:1 to 1:9 by varying volumes and/or concentrations of zinc sulfate hepta-hydrate and thiourea in the deposition solution. The structural and morphological characteristics of films have been investigated by X-ray diffraction (XRD), scanning electron microscope and UV-vis spectroscopic analysis. ZnS films were obtained with the [Zn]/[S] ratio ranged from1:1 to 1:6. In the cases of [Zn]/[S] ratio ≥ 3:1 or ≤1:9, no deposition was found. Transparent and polycrystalline ZnS film was obtained with pure-wurtzite structure at the [S]/[Zn] ratio of 1:6. The related formation mechanisms of CBD ZnS are discussed. The deposited ZnS films show good optical transmission (80-90%) in the visible region and the band gap is found to be in the range of 3.65-3.74 eV. The result is useful to further develop the CBD ZnS technology.  相似文献   

9.
Zinc sulphide (ZnS) thin films are deposited using chemical bath deposition method on the glass substrates in an aqueous alkaline reaction bath of zinc acetate and thiourea along with non-toxic complexing agent tri-sodium citrate at 95 °C. The results show noteworthy improvement in the growth rate of the deposited ZnS thin films and thickness of the film increases with the deposition time. From X-ray diffraction patterns, it is found that the ZnS thin films exhibit hexagonal polycrystalline phase reflecting from (101) and (0016) planes. The high resolution transmission electron microscopy studies confirmed the formation of hexagonal phase from the d-value calculation which was 0.3108 nm. X-ray photoelectron spectroscopy reveals that the Zn–S bonding energy is at 1022.5 and 162.1 eV for Zn 2p3/2 and S 2p1/2 states, respectively. Field emission scanning electron microscopy study shows that deposited thin films are highly uniform, with thin thickness and completely free from large ZnS clusters which usually form in aqueous solutions. Atomic force microscopy investigates that root mean square values of the ZnS thin films are from 3 to 4.5 nm and all the films are morphologically smooth. Energy dispersive spectroscopy shows that the ZnS thin films are relatively stoichiometric having Zn:S atomic ratio of 55:45. It is shown by ultraviolet–visible spectroscopy that ~90% transmittance and ~10% absorbance for the ZnS films in the visible region, which is significantly higher than that reported elsewhere and the band gap energy of the ZnS films is found to be 3.76, 3.74, and 3.71 eV, respectively.  相似文献   

10.
Nitrogen-substituted cubic perovskite-type SrTiO3 thin films were deposited in a one-step process using pulsed reactive crossed beam laser ablation (PRCLA) and RF-plasma assisted pulsed laser deposition (RF-PLD). Both techniques yield preferentially oriented films on SrTiO3(0 0 1), LaAlO3(0 0 1) and MgO(0 0 1) substrates with the unit cell parameters within 0.390(5) < a < 0.394(9) nm. The nitrogen content is higher in films deposited by PRCLA (0.84-2.40 at.%) as compared to films deposited by RF-PLD with nitrogen plasma (0.10-0.66 at.%). PRCLA with an ammonia gas pulse leads to a higher nitrogen content compared to the films grown with a nitrogen gas pulse, while films deposited by RF-PLD with ammonia plasma reveal only minor nitrogen contents (<0.10 at.%). The amount of the incorporated nitrogen can be tuned by adjusting the deposition parameters. Films deposited by PRCLA have a lower roughness of 1-3 nm compared to 12-18 nm for the films grown by RF-PLD. PRCLA yields partially reduced films, which exhibit electronic conductivity, while films deposited by RF-PLD are insulating. There is also a pronounced influence of the substrate material on the resistivity of the films deposited by PRCLA: films grown on SrTiO3 substrates exhibit a metallic-like behaviour, while the corresponding films grown on MgO and LaAlO3 substrates reveal a metal-to-semiconductor/insulator transition. Nitrogen incorporation into the SrTiO3 films results in an increased optical absorption at 370-500 nm which is associated with N(2p) localized states with the energy about 0.7 eV higher than the valence band energy in strontium titanate. The optical band gap energies in the studied N-substituted SrTiO3 films are 3.35-3.40 eV.  相似文献   

11.
Evaporated thin films of zinc sulfide (ZnS) have been deposited in a low ambient atmosphere of hydrogen sulfide (H2S ∼10−4 Torr). The H2S atmosphere was obtained by a controlled thermal decomposition of thiourea [CS(NH2)2] inside the vacuum chamber. It has been observed that at elevated substrates temperature of about 200 °C helps eject any sulfur atoms deposited due to thermal decomposition of ZnS during evaporation. The zinc ions promptly recombine with H2S to give better stoichiometry of the deposited films. Optical spectroscopy, X-ray diffraction patterns and scanning electron micrographs depict the better crystallites and uniformity of films deposited by this technique. These deposited films were found to be more adherent to the substrates and are pinhole free, which is a very vital factor in device fabrication.  相似文献   

12.
In this study, highly transparent conductive Ga-doped Zn0.9Mg0.1O (ZMO:Ga) thin films have been deposited on glass substrates by pulsed laser deposition (PLD) technique. The effects of substrate temperature and post-deposition vacuum annealing on structural, electrical and optical properties of ZMO:Ga thin films were investigated. The properties of the films have been characterized through Hall effect, double beam spectrophotometer and X-ray diffraction. The experimental results show that the electrical resistivity of film deposited at 200 °C is 8.12 × 10−4 Ω cm, and can be further decreased to 4.74 × 10−4 Ω cm with post-deposition annealing at 400 °C for 2 h under 3 × 10−3 Pa. In the meantime, its band gap energy can be increased to 3.90 eV from 3.83 eV. The annealing process leads to improvement of (0 0 2) orientation, wider band gap, increased carrier concentration and blue-shift of absorption edge in the transmission spectra of ZMO:Ga thin films.  相似文献   

13.
Thin films of lanthanum sulphide (La2S3) have been deposited onto glass substrates by spray pyrolysis technique from non-aqueous (methanol) medium. The structural, morphological, optical, dielectric, electric and thermoemf properties were studied. The films were polycrystalline with an irregular shaped particles present over the porous structure within a fibrous network structure. The optical band gap was estimated to be 2.50 eV. The dielectric properties were measured in the range 100 Hz-1 MHz. The electrical resistivity was of the order of 104 to 105 Ω cm. Thermoemf study revealed that the La2S3 films exhibit p-type electrical conductivity.  相似文献   

14.
TiO2 doped WO3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH4)2WO4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO2 doped WO3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO2 doping concentration on structural, electrical and optical properties of TiO2 doped WO3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy (Eg) were estimated. The films with 38% TiO2 doping in WO3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.  相似文献   

15.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

16.
The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10−1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ∼600 nm.  相似文献   

17.
Tin sulphide (SnS) thin films were deposited on glass substrate at different substrate temperature (Ts = 325 °C, 350 °C and 375 °C) by pyrolytic decomposition using stannous chloride and thiourea as precursor solutions. Also, indium-doped SnS thin films were prepared by using InCl3 as dopant source. The dopant concentration [In/Sn] was varied from 2 at% to 6 at%. The XRD analysis revealed that the films were polycrystalline in nature having orthorhombic crystal structure with a preferred grain orientation along (1 1 1) plane. Due to In doping, the orientation of the grains in the (1 1 1) plane was found to be deteriorated. Atomic force microscopy (AFM) measurements revealed that the surface roughness of the films decreased due to indium doping. The optical properties were investigated by measuring the transmittance characteristics which were used to find the optical band gap energy, refractive index and extinction coefficient. The energy band gap value was decreased from 1.60 to 1.43 eV with increasing In concentration. The photoluminescence (PL) measurements of thin films showed strong emission band centered at 760 nm. Using Hall Effect measurements electrical resistivity, carrier concentration and Hall mobility have been determined.  相似文献   

18.
A chemical spray pyrolysis technique for deposition of p-type Mg-doped CuCrO2 transparent oxide semiconductor thin films using metaloorganic precursors is described. As-deposited films contain mixed spinel CuCr2O4 and delafossite CuCrO2 structural phases. Reduction in spinel CuCr2O4 fraction and formation of highly crystalline films with single phase delafossite CuCrO2 structure is realized by annealing at temperatures ?700 °C in argon. A mechanism of synthesis of CuCrO2 films involving precursor decomposition, oxidation and reaction between constituent oxides in the spray deposition process is presented. Post-annealed CuCr0.93Mg0.07O2 thin films show high (?80%) visible transmittance and sharp absorption at band gap energy with direct and indirect optical band gaps 3.11 and 2.58 eV, respectively. Lower (∼450 °C) substrate temperature formed films are amorphous and yield lower direct (2.96 eV) and indirect (2.23 eV) band gaps after crystallization. Electrical conductivity of CuCr0.93 Mg0.07O2 thin films ranged 0.6-1 S cm−1 and hole concentration ∼2×1019 cm−3 determined from Seebeck analysis. Temperature dependence of conductivity exhibit activation energies ∼0.11 eV in 300-470 K and ∼0.23 eV in ?470 K region ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Heterojunction diodes of the structure Au/n-(ZnO)/p-(CuCr0.93Mg0.07O2)/SnO2 (TCO) were fabricated which show potential for transparent wide band gap junction device.  相似文献   

19.
TiO2, which is high in refractive index and dielectric constant, plays an important role in the fields of optics and electronics. In this work, TiO2 films were prepared on glass substrates by the technique of ion beam assisted electron beam evaporation. The films were deposited at 50, 150 and 300 °C, respectively. Then the as-deposited TiO2 films were annealed at 450 °C for 1 h in vacuum atmosphere. Structures and optical properties of TiO2 films were characterized by XRD, SEM, ellipsometry and spectrophotometer. As a result, the structure and the refractive index of films were improved by both the annealing and the increasing of the deposition temperature. The UV-vis transmittance spectra also confirmed that the deposition temperature has a significant effect on the transparency of the thin films. The highest transparency over the visible wavelength region of spectra was obtained at the deposition temperature of 300 °C. The allowed direct band gap at the deposition temperature ranging from 50 to 300 °C was estimated to be in the range from 3.81 to 3.92 eV.  相似文献   

20.
In2S3 thin films were grown on glass substrates by means of the vacuum thermal evaporation technique and subsequently thermally annealed in nitrogen and free air atmosphere from 250 to 350 °C for different durations. Experimental parameters have been adjusted in order to optimize the annealing conditions, and to obtain high band gap energy at low deposition temperature, as required for photovoltaic applications. In order to improve our understanding of the influence of the deposition and annealing parameters on device performance, we have investigated our indium sulfide material by X-ray diffraction, energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and spectrophotometry. The optical and structural properties of the films were studied as a function of the annealing temperature and durations. X-ray diffraction analysis shows the initial amorphous nature of deposited In-S thin films and the phase transition into crystalline In2S3 upon thermal annealing. Films show a good homogeneity and optical direct band gap energy about 2.2 eV. An annealing temperature of 350 °C during 60 min in air atmosphere were the optimal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号