共查询到20条相似文献,搜索用时 54 毫秒
1.
壳多糖抑制细菌生长的构效关系 总被引:6,自引:0,他引:6
运用化学结构已清楚, 分属4大系列的29种壳多糖, 以4种不同类型的细菌(革兰氏阳性菌Ecoli K1、革兰氏阴性菌Bacillus cereus、Bacillus megaterium和Staphlylococcu aureus)为研究对象, 进行了壳多糖抑菌能力构效关系的研究. 在实验中采用96孔平板, 用计算机\|吸光值读数仪直接测定每个孔的吸光值, 获得了各个细菌在不同壳多糖浓度中的生长曲线和壳多糖抑制细菌生长的最低抑制浓度(MIC, Minimum inhibit concentration). 通过比较同一(各个)系列的壳多糖在这些相同(不同)细菌的MIC变化规律与壳多糖的化学结构的关系, 发现同一壳多糖对不同的细菌的MIC值是不相同的, 因而壳多糖抑制细菌生长的能力首先与细菌本身特点有关, 但与是否为革兰氏阳性菌或阴性菌无直接的相关性; 同一细菌对不同化学结构的壳多糖有一定的相关性, 在壳多糖的聚合程度(DP)相同的条件下, 壳多糖中氨基被乙酰化(DA)的程度越低, 壳多糖抑制细菌生长的MIC值越低, 壳多糖抑制细菌生长的能力就越强; 同样,在DA相同的情况下, 分子越小, 壳多糖抑制细菌生长的MIC值越低, 抑制细菌生长的能力越强. 根据上述实验结果, 初步推测壳多糖抑制细菌生长的机制可能与其在溶液中所带的正电荷多少有关. 相似文献
2.
脱乙酰壳多糖膜对碘的吸附 总被引:1,自引:0,他引:1
脱乙酰壳多糖膜对碘的吸附陈天*汪士新(扬州大学农学院有机化学教研室扬州225009)关键词脱乙酰壳多糖,膜,碘,吸附1996-11-06收稿,1997-06-11修回江苏省教育委员会自然科学基金资助项目脱乙酰壳多糖高分子链中含有大量的游离氨基,表现出... 相似文献
3.
部分N—酰化脱乙酰壳多糖的水溶性 总被引:3,自引:0,他引:3
甲壳素由于氢键缔结使其溶解度太小,而限制了应用.在甲壳素分子上引入大的酰基可改善其在有机溶剂中的溶解性.用冷冻强碱处理的方法也可制得水溶性甲壳素,但此法会引起甲壳素的降解.本文报导脱乙酰壳多糖的一些N-酰化衍生物,探讨它们的水溶性与N-酰化度等的关系. 相似文献
4.
脱乙酰壳多糖化学修饰电极测定铂的研究 总被引:8,自引:0,他引:8
用脱乙酰壳多糖修饰电极为工作电极,阳极溶出伏安法测定痕量铂。在pH=2 ̄3的KCl-HCl底液中,-0.3V富集2min,静止15s,以0.2V/s扫速阳极溶出,峰电位在-0.16V(vs.SCE),铂(Ⅳ)离子浓度在0.5 ̄5.0μg/mL范围内与峰高呈线性关系。富集10min后,可检测0.025μg/mL铂(Ⅳ)。该法用于贵金属矿样的测定,无需分离,结果满意。用循环伏安法、紫外光谱和拉曼光谱研 相似文献
5.
用脱乙酰壳多糖化学修饰电极为工作电极,阳极溶出伏安法测定痕量银。在pH4.0的0.1mol·L-1邻苯二甲酸氢钾和0.1mol·L-1硫氰化溶液中,起始电位一0.80V,终点电位+0.5V,富集时间3min,以0.1V·s-1扫速阳极溶出,峰电位在一0.075V(vs.Ag/AgCl),银浓度在0.02~1.0μg·m1-1范围内与峰高呈线性关系,提高了测定灵敏度,用于矿样测定,无需分离,结果满意。用紫外光谱和拉曼光谱研究了该法的电极过程机理。 相似文献
6.
7.
8.
9.
10.
抗癌性吲哚喹唑啉衍生物的定量构效关系 总被引:10,自引:0,他引:10
用量子化学密度泛函理论(DFT)、分子力学(MM+)及回归分析方法,对一系列抗癌性吲哚喹唑啉衍生物进行了定量构效关系(QSAR)的研究.通过回归分析,筛选了影响抗癌活性的主要因素,建立了定量构效关系方程.结果表明,化合物的最低未占据分子轨道(LUMO)与最高占据分子轨道(HOMO)之间的能量差(ΔεL-H)、分子的疏水性(lgP)以及环D上的总电荷(ΣQD)和环D上R1取代基的第一个原子的净电荷(QFR1)是影响化合物抗癌活性的主要因素.所得模型对化合物抗癌活性有较好的预测效果. 同时, 与ΔεL-H密切相关的LUMO轨道能量及共轭平面面积对药物的DNA-结合及其活性起着十分重要的作用,可通过选取具有较强的拉电子性质同时又能与本系列化合物的骨架形成更大共轭体系的取代基R1,设计抗癌活性较高的化合物. 相似文献
11.
以壳聚糖与呋喃甲酰氯反应得到呋喃甲酰壳聚糖。通过FT-IR、1 H-NMR、X射线衍射、热重分析、溶解度实验、元素分析、抗氧化活性测试等手段对产物进行了结构和性能表征。结果表明:产物为目标产物且热稳定性好于壳聚糖;在水中的溶解性能良好,溶解度为0.04g/mL;取代度为0.69;当对羟基自由基的清除率达到50%时,呋喃甲酰壳聚糖的质量浓度为1.1mg/mL,其还原能力随质量浓度增加而增强,抗氧化活性优于壳聚糖。 相似文献
12.
Ariadna Berenice Trejo-Raya Víctor Manuel Rodríguez-Romero Silvia Bautista-Baos Francisco Roberto Quiroz-Figueroa Ramn Villanueva-Arce Enrique Durn-Pramo 《Molecules (Basel, Switzerland)》2021,26(21)
A biofungicide is a natural product that can be derived from various sources such as, among others, microorganisms, higher plants, animal products, phytochemicals, semiochemicals, and antagonist microorganisms. One of the most important approaches for the production of biofungicides is the combination of biocontrol agents. This study showed the inhibition growth of Alternaria alternata and Fusarium solani treated with cell-free extracts of P. fluorescens. Using thin-layer chromatography and plate assays it was also demonstrated that the cell-free extracts of P. fluorescens contained siderophores and derivates of 4-diacetylphloroglucinol and phenazine. Moreover, the combination of cell-free extracts of P. fluorescens and chitosan [50–1.5% (v/v)] had a synergistic effect since they notably inhibited the mycelial growth of A. altenata and F. solani. Various morphological alterations to the mycelia and conidia of the treated fungi as a result of this combination were also observed. The present study could be a starting point to control other fungal phytopathogens using different cell-free extracts and chitosan as biocontrol agents. 相似文献
13.
Luis C. Chitiva-Chitiva Cristbal Ladino-Vargas Luis E. Cuca-Surez Juliet A. Prieto-Rodríguez Oscar J. Patio-Ladino 《Molecules (Basel, Switzerland)》2021,26(11)
In this study, the antifungal potential of chemical constituents from Piper pesaresanum and some synthesized derivatives was determined against three phytopathogenic fungi associated with the cocoa crop. The methodology included the phytochemical study on the aerial part of P. pesaresanum, the synthesis of some derivatives and the evaluation of the antifungal activity against the fungi Moniliophthora roreri, Fusarium solani and Phytophthora sp. The chemical study allowed the isolation of three benzoic acid derivatives (1–3), one dihydrochalcone (4) and a mixture of sterols (5–7). Seven derivatives (8–14) were synthesized from the main constituents, of which compounds 9, 10, 12 and 14 are reported for the first time. Benzoic acid derivatives showed strong antifungal activity against M. roreri, of which 11 (3.0 ± 0.8 µM) was the most active compound with an IC50 lower compared with positive control Mancozeb® (4.9 ± 0.4 µM). Dihydrochalcones and acid derivatives were active against F. solani and Phytophthora sp., of which 3 (32.5 ± 3.3 µM) and 4 (26.7 ± 5.3 µM) were the most active compounds, respectively. The preliminary structure–activity relationship allowed us to establish that prenylated chains and the carboxyl group are important in the antifungal activity of benzoic acid derivatives. Likewise, a positive influence of the carbonyl group on the antifungal activity for dihydrochalcones was deduced. 相似文献
14.
Griselda Valenzuela-Ortiz Soila Maribel Gaxiola-Camacho Cesar San-Martín-Hernndez Miguel ngel Martínez-Tllez Emmanuel Aispuro-Hernndez Jaime Lizardi-Mendoza Eber Addí Quintana-Obregn 《Molecules (Basel, Switzerland)》2022,27(4)
In Mexico, the mango crop is affected by anthracnose caused by Colletotrichum species. In the search for environmentally friendly fungicides, chitosan has shown antifungal activity. Therefore, fungal isolates were obtained from plant tissue with anthracnose symptoms from the state of Guerrero in Mexico and identified with the ITS and β-Tub2 genetic markers. Isolates of the Colletotrichum gloeosporioides complex were again identified with the markers ITS, Act, β-Tub2, GADPH, CHS-1, CaM, and ApMat. Commercial chitosan (Aldrich, lot # STBF3282V) was characterized, and its antifungal activity was evaluated on the radial growth of the fungal isolates. The isolated anthracnose-causing species were C. chrysophilum, C. fructicola, C. siamense, and C. musae. Other fungi found were Alternaria sp., Alternaria tenuissima, Fusarium sp., Pestalotiopsis sp., Curvularia lunata, Diaporthe pseudomangiferae, and Epicoccum nigrum. Chitosan showed 78% deacetylation degree and a molecular weight of 32 kDa. Most of the Colletotrichum species and the other identified fungi were susceptible to 1 g L−1 chitosan. However, two C. fructicola isolates were less susceptible to chitosan. Although chitosan has antifungal activity, the interactions between species of the Colletotrichum gloeosporioides complex and their effect on chitosan susceptibility should be studied based on genomic changes with molecular evidence. 相似文献
15.
壳聚糖抗菌活性的影响因素 总被引:70,自引:1,他引:70
以大肠杆菌为实验菌种,研究了壳聚糖的浓度,脱乙酰化度、分子量、及环境PH值等因素对壳聚糖抗菌活性的影响,并初步探讨了壳聚糖的抗菌机理,结果表明,在研究范围内,随着浓度和脱乙酰化度的提高,抗菌活性增强;随分子量的增加,抗菌活性出现先增强而后略有减弱的趋势,转折点在9.16*10^4前后;在PH为6.5左右,抗菌活性最优,通过激光共焦显微镜对异硫氰酸荧光素(FITC)标记的壳聚糖齐聚物(Mw=8000)与大肠杆菌作用的观察,发现具有抗菌性的壳聚糖齐聚物进行到了细菌细胞的内部,用扫描电镜观察分子量为27.4*10^4的壳聚糖对大肠杆菌的作用,发现壳聚糖使菌体凹陷变形,并伴有自溶现象。 相似文献
16.
Vesna Rastija Karolina Vrande
i Jasenka osi Gabriella Kaniai ari Ivana Maji Dejan Agi Domagoj ubari Maja Karna Drago Belo Mario Komar Maja Molnar 《Molecules (Basel, Switzerland)》2022,27(7)
Coumarin derivatives have been reported as strong antifungal agents against various phytopathogenic fungi. In this study, inhibitory effects of nine coumarinyl Schiff bases were evaluated against the plant pathogenic fungi (Fusarium oxysporum f. sp. lycopersici, Fusarium culmorum, Macrophomina phaseolina and Sclerotinia sclerotiourum). The compounds were demonstrated to be efficient antifungal agents against Macrophomina phaseolina. The results of molecular docking on the six enzymes related to the antifungal activity suggested that the tested compounds act against plant pathogenic fungi, inhibiting plant cell-wall-degrading enzymes such as endoglucanase I and pectinase. Neither compound exhibited inhibitory effects against two beneficial bacteria (Bacillus mycoides and Bradyrhizobium japonicum) and two entomopathogenic nematodes. However, compound 9 was lethal (46.25%) for nematode Heterorhabditis bacteriophora and showed an inhibitory effect against acetylcholinesterase (AChE) (31.45%), confirming the relationship between these two activities. Calculated toxicity and the pesticide-likeness study showed that compound 9 was the least lipophilic compound with the highest aquatic toxicity. A molecular docking study showed that compounds 9 and 8 bind directly to the active site of AChE. Coumarinyl Schiff bases are promising active components of plant protection products, safe for the environment, human health, and nontarget organisms. 相似文献
17.
Luminita Georgeta Confederat Cristina Gabriela Tuchilus Maria Dragan Mousa Shaat Oana Maria Dragostin 《Molecules (Basel, Switzerland)》2021,26(12)
Despite the advantages presented by synthetic polymers such as strength and durability, the lack of biodegradability associated with the persistence in the environment for a long time turned the attention of researchers to natural polymers. Being biodegradable, biopolymers proved to be extremely beneficial to the environment. At present, they represent an important class of materials with applications in all economic sectors, but also in medicine. They find applications as absorbers, cosmetics, controlled drug delivery, tissue engineering, etc. Chitosan is one of the natural polymers which raised a strong interest for researchers due to some exceptional properties such as biodegradability, biocompatibility, nontoxicity, non-antigenicity, low-cost and numerous pharmacological properties as antimicrobial, antitumor, antioxidant, antidiabetic, immunoenhancing. In addition to this, the free amino and hydroxyl groups make it susceptible to a series of structural modulations, obtaining some derivatives with different biomedical applications. This review approaches the physico-chemical and pharmacological properties of chitosan and its derivatives, focusing on the antimicrobial potential including mechanism of action, factors that influence the antimicrobial activity and the activity against resistant strains, topics of great interest in the context of the concern raised by the available therapeutic options for infections, especially with resistant strains. 相似文献
18.
Adelya Khayrova Sergey Lopatin Balzhima Shagdarova Olga Sinitsyna Arkady Sinitsyn Valery Varlamov 《Molecules (Basel, Switzerland)》2022,27(2)
This study shows the research on the depolymerisation of insect and crab chitosans using novel enzymes. Enzyme preparations containing recombinant chitinase Chi 418 from Trichoderma harzianum, chitinase Chi 403, and chitosanase Chi 402 from Myceliophthora thermophila, all belonging to the family GH18 of glycosyl hydrolases, were used to depolymerise a biopolymer, resulting in a range of chitosans with average molecular weights (Mw) of 6–21 kDa. The depolymerised chitosans obtained from crustaceans and insects were studied, and their antibacterial and antifungal properties were evaluated. The results proved the significance of the chitosan’s origin, showing the potential of Hermetia illucens as a new source of low molecular weight chitosan with an improved biological activity. 相似文献
19.
Giuseppe Granata Stefano Stracquadanio Marco Leonardi Edoardo Napoli Graziella Malandrino Viviana Cafiso Stefania Stefani Corrada Geraci 《Molecules (Basel, Switzerland)》2021,26(13)
The use of natural compounds with biocidal activity to fight the growth of bacteria responsible for foodborne illness is one of the main research challenges in the food sector. This study reports the preparation and physicochemical characterization of chitosan nanoparticles loaded with Thymus capitatus (Th-CNPs) and Origanum vulgare (Or-CNPs) essential oils. The nanosystems were obtained by ionotropic gelation technique with high encapsulation efficiency (80–83%) and loading capacity (26–27%). Nanoparticles showed a spherical shape, bimodal particle size distribution, and good stability (zeta potential values > 40 mV). The treatment of the nanosuspensions at different temperatures (4 and 40 °C) and storage times (7, 15, 21, and 30 days) did not affect their physicochemical parameters and highlights their reservoir ability for essential oils also under stressful conditions. Both Or-CNPs and Th-CNPs exhibited an enhanced bactericidal activity against foodborne pathogens (S. aureus, E. coli, L. monocytogenes) than pure essential oils. These ecofriendly nanosystems could represent a valid alternative to synthetic preservatives and be of interest for health and food safety. 相似文献
20.
壳聚糖改性及用其整理纺织品抗菌性能的研究 总被引:10,自引:0,他引:10
用羟甲基化和醚化等方法制备了改性壳聚糖羟甲基壳聚糖和羟乙基乙基醚壳聚糖。在中性条件下它们溶解于水。实验显示,改性壳聚糖具有较好的抑菌作用和吸湿保湿性能。对织物进行的后整理实验发现,羟乙基乙基醚壳聚糖适用于对棉布的整理加工,羟甲基壳聚糖适用于对真丝绸的整理加工。经整理后的织物具有较好的抗菌性,且吸湿、透湿、染色性能较优。研究表明改性壳聚糖可作为优良的功能性天然“绿色”纺织品整理剂。 相似文献