首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependence of the resistance of composite samples (1−x)La0.67Sr0.33MnO3+xYSZ with different YSZ doping level x was investigated at magnetic fields 0-3 T, where YSZ represents yttria-stabilized zirconia. Results show that the YSZ dopant does not only adjust the metal-insulator transition temperature, but also increases the magnetoresistance effect. With increase of YSZ doping level for the range of x<2%, the metal-insulator transition temperature values TP of the composites decrease, but TP increases with increase of x further for the range of x>2%. Meanwhile, in the YSZ-doped composites, a broad metal-insulator transition temperature region was found at zero and low magnetic field, which results in an obvious enhanced magnetoresistance in the temperature range 10-350 K. Specially, a larger magnetoresistance value was observed at room temperature at 3 T, which is encouraging with regard to the potential application of magnetoresistance materials.  相似文献   

2.
We report the resistivity (ρ)-temperature (T) patterns in (1-x)La0,7Ca0,3MnO3+xAl2O3 composites (0≤x≤0.05) over a temperature regime of 50-300 K. Al2O3 addition has increased the resistivity of these composites. The Curie temperature (TC) is almost independent on the Al2O3 content and is about 250 K for all the samples, while the metal-insulator transition temperature (TMI) decreases with increasing Al2O3 content. Based on the phenomenological equation for conductivity under a percolation approach, which is dependent on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental data (ρT) from 50 to 300 K and find that the activation barrier increases as Al2O3 content increases.  相似文献   

3.
The magnetic structure of the (1-x) α Fe2O3xAl2O3 system with x= 0–0.1 has been investigated on polycrystalline samples by neutron diffraction method. The Morin transition temperature and the Néel temperature are observed to decrease on increasing x. The angle by which the magnetic moments turn out of the basal plane in the Morin transition also decreases with increasing x. The Morin transition does not occur above x = 0.09.  相似文献   

4.
王建元  翟薇  金克新  陈长乐 《中国物理 B》2011,20(9):97202-097202
The transport properties and magnetoresistance of electron-doped manganate / insulator composites (La0.8Te0.2MnO3)1 - x/(ZrO2)x (x=0, 0.3, and 0.5) are investigated. It is found that the metal-insulator transition temperature of this system shifts to a lower value as the ZrO2 content increases. The introduction of ZrO2 enhances both the domain scattering and electron relative scattering in the metal transport region. In the adiabatic small polaron hopping transport region, the thermal activation energy seems invariable regardless of the ZrO2 content. The application of a magnetic field promotes the charge transportation capabilities of the composites, and the magnetoresistance is enhanced with an increase of the ZrO2 content. This could be attributed to the more remarkable modification effect of magnetic field on ordering degree in the composites than in pure La0.8Te0.2MnO3.  相似文献   

5.
Composite samples (1−x)La0.7Ca0.2Sr0.1MnO3(LCSMO)+x(ZnO) with different ZnO doping levels x have been investigated systematically. The structure and morphology of the composites have been studied by the X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The XRD and SEM results indicate that no reaction occurs between LCSMO and ZnO grains, and that ZnO segregates mostly at the grain boundaries of LCSMO. The magnetic properties reveal that the ferromagnetic order of LCSMO is weakened by addition of ZnO. The results also show that ZnO has a direct effect on the resistance of LCSMO/ZnO composites, especially on the low-temperature resistance. With increase of the ZnO doping level, TP shifts to a lower temperature and the resistance increases. It is interesting to note that an enhanced magnetoresisitance (MR) effect for the composites is found over a wide temperature range from low temperature to room temperature in an applied magnetic field of 3 kOe. The maximum MR appears at x=0.1. The low field magnetoresistance (LFMR) results from spin-polarized tunneling. However, around room temperature, the enhanced MR of the composites is caused by magnetic disorder.  相似文献   

6.
We report the structural, magentoresistance and electro-magnetic properties of ferromagnet–ferroelectric–type (1−x)La0.7Sr0.3MnO3/xBaTiO3 (with x=0.0%, 3.0%, 6.0%, 12%, 15.0% and 18.0%, in wt%) composites fabricated through a solid-state reaction method combined with a high energy milling method. The insulator–metal transition temperature shifts to a lower temperature and resistivity increases while the feromagnetic–paramagnetic transition temperature remains almost unchanged with the increase of BaTiO3 content. Magnetoresistance of the composites at an applied magnetic field H=3 kOe is enhanced in the wide temperature ranges with the introduction of BaTiO3, which could be explained by the enhanced spin polarized tunneling effect induced by the introduction of BaTiO3. The low-field magnetoresistance of the composite is analyzed in the light of a phenomenological model based on the spin polarized tunneling at the grain boundaries. Furthermore, the temperature dependence of resistivity for this series has been best-fitted by using the adiabatic small polaron and variable range hopping models. These models may be used to explain effect of BTO on the electronic transport properties on high temperature paramagnetic insulating region.  相似文献   

7.
The temperature dependence of the resistivity for composite samples of (1−x)La0.67Ba0.33MnO3+xYSZ(LBMO/YSZ) with different YSZ doping level of x has been investigated in a magnetic field range of 0-7000 Oe, where the YSZ represents yttria-stabilized zirconia (8 mol% Y2O3+92 mol% ZrO2). With increasing YSZ doping level, the range of 0-10%, the metal-insulator transition temperature (TP) decreases. However, the resistivity, specially the low temperature resistivity, increases. Results also show that the YSZ doping level has an important effect on a low field magnetoresistance (LFMR). In the magnetic field of 7000 Oe, a room temperature magnetoresistance value of 20% was observed for the composite with a YSZ doping level of 2%, which is encouraging for potential application of CMR materials at room temperature and low field.  相似文献   

8.
The (1−x)La0.67Ca0.33MnO3+xCuO composites have been synthesized by a new liquid phase method. The XRD and SEM measurements reveal that little CuO is soluble in the structure of La0.67Ca0.33MnO3 and is mainly distributed at the grain boundary of La0.67Ca0.33MnO3. As CuO content x increases, the magnetization M values increase until x=0.05 and M values decrease when x further increases at low temperature. For x=0.10, 0.20 and 0.30 composites, double metal-insulator transitions accompanying a single ferromagnetic transition are observed. Large low-field magnetoresistance is achieved for the composites and the largest magnetoresistance appeared when x=0.20.  相似文献   

9.
徐明祥  焦正宽 《物理学报》1998,47(6):1006-1011
采用固态反应法制备了In替代的(La2/3Ca1/3)(Mn(3-2x)/3In2x/3)O3(x=0.00,0.10,0.15)体系.通过测量其零场和1.6T磁场下样品的电阻-温度关系以及一定温度下磁电阻率与磁场的关系.发现随In3+替代量的增加其磁电阻峰和电阻峰均向低温方向移动,同时巨磁电阻效应减弱,磁电阻峰也展宽.这是由于In3+替代量的变化,引起 关键词:  相似文献   

10.
Polarized neutron reflectometry was used to investigate the amorphous multilayer nanostructures [(Co45Fe45Zr10)x(Al2O3)100−x/a-Si:H]m, whose magnetic properties are dependent on the concentration of the magnetic constituent (x=34, 47 and 60 at%) as well as on the thicknesses of the metal-dielectric (Co45Fe45Zr10)x(Al2O3)100−x and semiconductor a-Si:H layers. The average magnetization of the individual magnetic layer is found to be inhomogeneous with the magnetically active central part and two magnetically dead parts at the interfaces.  相似文献   

11.
用等离子体氧化形成中间绝缘层的方法可重复制备出具有隧道磁电阻(TMR)效应的Ni80Fe20/Al2O3/Co磁性隧道结.光透射谱等实验结果表明等离子体氧化能可控制地制备较致密的Al2O3绝缘层.样品的TMR比值在室温下最高可达6.0%,反转场可低于800A/m,相应的平台宽度约为2400A/m.结电阻Rj的变化范围从百欧到几百千欧,并且TMR比值随零磁场结偏压增大单调减小. 关键词:  相似文献   

12.
The mixed spinel-perovskite composites of xMnFe2O4-(1-x)BiFeO3 with x=0, 0.1, 0.2, 0.3 and 0.4 were prepared by solid state reaction method. The structure and grain size were examined by means of X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The XRD results showed that the composites consisted of spinel MnFe2O4 and perovskite BiFeO3 phases after being calcined at the temperature 950 °C for 2 h. The grain size ranged from 0.8 to 1 μm. Magnetization was found to increase with increasing concentration of ferrite content. The variation of dielectric constant and dielectric loss with frequency showed dispersion in the low frequency range. Magnetocapacitance was also observed in the prepared composites, which may be the sign of magnetoelectric coupling in the synthesized composites at room temperature.  相似文献   

13.
Magnetic and transport properties of (La0.7Pb0.3MnO3)1−xAgx composites are explored in this study. Ferromagnetism is gradually attenuated due to the magnetic dilution with increase of Ag content percentage. Clearly irreversible behavior in the zero-field cooling and field cooling curves at a low field caused by the competition between the magnetization and magnetic domain orientation processes has been observed as x increases. Saturation magnetization decreases as x increases, while ferromagnetic transition temperature remains around 346 K for all composites. The resistivity decreases significantly for (La0.7Pb0.3MnO3)1−xAgx composites. It is suggested that introduction of Ag into the niche of grain boundaries forms artificial conducting network and improves the carriers to transport. However, enhancement of magnetoresistance has been observed for the system.  相似文献   

14.
The samples with the Mn3+/Mn4+ ratio fixed at 2:1 La(2+x)/3Sr(1−x)/3Mn1−xCrxO3 (0≤x≤0.20) have been prepared. The magnetic, electrical transport, and magnetoresistance properties have been investigated. Remarkable transport and colossal magnetoresistance (CMR) effect, as well as cluster glass (CG) behaviors have been clearly observed in the samples studied. It was found that the Curie temperature Tc and insulator−metal transition temperature Tp1 are strongly affected by Cr substitution. The experiment observations are discussed by taking into account the variety of tolerance factors t; the effects of A-site radius 〈rA〉 and the A-site mismatch effect (σ2).  相似文献   

15.
Single-phased polycrystalline Y3Fe5−2xAlxCrxO12 garnet samples (x=0, 0.2, 0.4 and 0.6) have been prepared by the conventional ceramic technique. Rietveld refinement of X-ray diffraction patterns of the samples shows them to crystallize in the Ia3d space group and the corresponding lattice constant to decrease with increasing Al3+ and Cr3+ contents (x). Mössbauer results indicate that Cr3+ substitutes for Fe3+ at the octahedral sites whilst Al3+ essentially replaces Fe3+ at the tetrahedral sites. This result indicates that co-doping of Y3Fe5O12 does not affect the preferential site occupancy for separate individual substitution of either Cr3+ or Al3+. The magnetization measurements reveal that the Curie temperature (Tc) monotonically decreases with increasing x while the magnetic moment per unit formula decreases up to x=0.4 and then slightly increases for x=0.6. This reflects a progressive weakening of the ferrimagnetic exchange interaction between the Fe3+ ions at octahedral and tetrahedral sites due to co-substitution. The magnetic moment was calculated using the cations distribution inferred from the Mössbauer data and the collinear ferrimagnetic model, and was found to agree reasonably with the experimentally measured value. The phenomenological amplitude crossover, characterized by the temperature T*, has also been observed in the doped YIG and briefly discussed.  相似文献   

16.
The ceria-zirconium-modified alumina-supported palladium catalysts are prepared using impregnation method with H2PdCl4 as Pd source, hydrazine hydrate as reducing agent. The physicochemical properties of these catalysts are characterized by BET surface area (BET), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), temperature programmed reduction (H2-TPR) and temperature programmed oxidation (O2-TPO) techniques, and their catalytic activities for the combustion of methane are examined. The results show that the palladium mainly exist in a highly dispersed PdO species on Ce-Zr-rich grains as well as Al2O3-rich grains surfaces, and a stable PdO species due to the strong interaction between PdO and CeO2-ZrO2 on the Ce-Zr/Al2O3 surfaces. The catalytic activity is strongly related to the redox behavior of PdO species highly dispersed on Ce-Zr-rich grains and Al2O3-rich grains surfaces, and the higher the reducibility of the PdO species, the higher the catalytic activity. The presence of Ce-Zr in Pd/Al2O3 catalyst would inhibit the site growth of PdOx particles and decomposition of PdO to Pd0, and the reoxidation property of Pd0 to PdOx is significantly improved, which obviously increases thermal stability and catalytic activity of Pd/Ce-Zr/Al2O3 catalyst for the methane combustion.  相似文献   

17.
The influence of SiO2 on the electrical transport properties of LCMO/SiO2 composites with different SiO2 contents x is investigated, where LCMO represents La2/3Ca1/3MnO3. Results show that the SiO2 phase not only shifts the metal–insulator transition temperature (Tp) to a high temperature range, but also has an effect on the magnetoresistance (MR) of the composites. The temperature dependence of resistivity indicates that the Tp of the composites is obviously higher than that of pure LCMO, and that the peak resistivity ρmax of the composites is lower than that of pure LCMO. In the SiO2 content x∼0.02, the TP is the highest and ρmax becomes the lowest. The experimental observation is discussed on the basis of the analysis of scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns. Compared with pure LCMO, a possible interpretation is presented by considering the influence of SiO2 on the coupling between ferromagnetic (FM) domains of LCMO.  相似文献   

18.
In this paper,we report on the magnetic properties of Fe3O4 nanoparticles with different grain sizes under different pressures.In all the samples,the saturated magnetization Ms shows a linear decrease with increasing pressure.The thickness of the magnetic dead layer on the nanoparticle surface nuder different pressures was roughly estimated,which also increases with increasing pressure.The transport measurements of the nanoparticle Fe3O4 compacts show that the low-field magnetoresistance (MR) value is insensitive to the grain size in a wide temperature range;however,the high-field MR value is dependent on grain size,especially at low temperatures.These experimental results can be attributed to the different surface states of the nanoparticles.  相似文献   

19.
The crystallization mechanism and conductivity of lithium aluminum germanium phosphate [LAGP] glass-ceramics fabricated from Li1+xAlxGe2−x(PO4)3 (x=0.0-0.7) glass system were investigated as a function of Al2O3 additions. A non-isothermal analysis was performed to study the crystallization behavior of LAGP glass-ceramics at various heating rates (5-25K min−1) by the Kissinger equation and the Augis-Bennett equation, illustrating volume crystallization for the glass-ceramics. The crystal identification and microstructure in glass-ceramics containing various Al2O3 contents were analyzed by means of XRD and FESEM. The main phase of the glass-ceramics was found to be LiGe2(PO4)3, with AlPO4 as the impurity phase. Additionally the highest total ionic conductivity (5.8×10−4 S/cm) at room temperature was obtained when x=0.5 for Li1+xAlxGe2−x(PO4)3 (x=0.0-0.7) glass-ceramics, suggesting that it was a promising electrolyte for practical application in all-solid-state lithium batteries.  相似文献   

20.
The magnetic and transport properties of nanocrystalline ZnxFe3−xO4 with x=0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0, respectively, fabricated by the sol-gel method have been investigated. Large magnetoresistance (MR) was observed and found to be originated both from the tunneling of the spin-polarized electrons across the adjacent ferromagnetic grains and the scattering by the canted spins at the grain surface near the grain boundaries. It has been revealed that the MR for the ZnxFe3−xO4 samples (x=0, 0.5 and 1.0) increases with the temperature decreasing from room temperature until a maximum is reached at around 55 K. Then a sharp drop occurs with the further decrease in temperature, regarded as a spin (cluster) glass transition. For the samples studied, a biggest low field (0.5 T) MR value of about 20% for x=0 at 55 K has been obtained. The mechanism of the MR behavior of the materials was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号