首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小白菜中残留虫酰肼的超临界流体萃取条件的研究   总被引:7,自引:0,他引:7  
杨立荣  张兴  陈安良  李广泽 《色谱》2004,22(3):263-266
将超临界流体萃取(supercritical fluid extraction,SFE)技术与高效液相色谱分析相结合,建立了特异性杀虫剂虫酰肼的萃取分离方法。SFE对虫酰肼的萃取条件:压力48.3 MPa(7000 psi),温度60 ℃,静态萃取时间20 min,CO2体积10 mL,改性剂甲醇添加量0.04 mL/g,丙酮为收集溶剂。在此条件下,SFE对虫酰肼的萃取率为100.75%,所得样品可直接用于高效液相色谱分析。色谱条件:紫外-二极管阵列检测器(检测波长为245 nm),C18键合色谱柱,乙腈  相似文献   

2.
Supercritical fluid extraction (SFE) of aurentiamide acetate from Patrinia villosa Juss was performed. The optimization of parameters was carried out using an analytical-scale supercritical fluid extraction (SFE) system. Then the extraction was scaled up by 100 times using a preparative SFE system under the optimized conditions of 55 degrees C, 35 MPa and modified CO2 with 10% methanol. Then, the crude extract I obtained by SFE was chromatographed on silica gel and the solvent system composed of petroleum ether-ethyl acetate (5:1, v/v) was used to produce the crude extract II, which was further isolated and purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:1.2:1.2:1, v/v/v/v). One hundred fifty-five milligrams of aurentiamide acetate was obtained from 400 mg crude extract II (contained 42% target) with a purity of 99.3% determined by HPLC and 92.3% recovery in one-step elution, and identification was performed by UV, MS, 1H NMR and 13C NMR. As far as we know, this is the first report of discovering aurentiamide acetate from the plant of Patrinia genius.  相似文献   

3.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and on‐line isolation of the anthocyanidins from the petals of Chaenomeles sinensis in two stages. The SFE parameters were optimized by an orthogonal test, and the solvent systems of SFE and HSCCC were calculated and optimized with the help of a multiexponential function model. In the first stage, the lower phase of the solvent system of n‐butanol/tert‐butyl methyl ether/acetonitrile/0.1% aqueous TFA (0.715:1.0:0.134:1.592, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, after extraction, the extractants were pumped into HSCCC column, and then eluted with the corresponding upper phase to isolate the moderately hydrophobic compounds. In the second stage, the upper phase of the solvent system of n‐butanol/ethyl acetate/acetonitrile/0.1% aqueous TFA (1.348:1.0:0.605:2.156, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the hydrophobic compounds. With the help of two‐stage SFE/HSCCC, six compounds including delphinidin‐3‐O‐glucoside (Dp3G), cyanidin‐3‐O‐glucoside (Cy3G), peonidin‐3‐O‐glucoside (Pn3G), delphinidin (Dp), peonidin (Pn), and malvidin (Mv) were successfully separated within 300 min. The targeted compounds were identified by UV spectrophotometry, MS, and NMR spectroscopy. This research has opened up great prospects for the industrial application of SFE–HSCCC for the automatic extraction and separation of unstable compounds.  相似文献   

4.
Electromembrane extraction (EME) proved to be a simple and rapid pretreatment method for analysis of amino acids and related compounds in body fluid samples. Body fluids were acidified to the final concentration of 2.5 M acetic acid and served as donor solutions. Amino acids, present as cations in the donor solutions, migrated through a supported liquid membrane (SLM) composed of 1-ethyl-2-nitrobenzene/bis-(2-ethylhexyl)phosphonic acid (85:15 (v/v)) into the lumen of a porous polypropylene hollow fiber (HF) on application of electric field. The HF was filled with 2.5 M acetic acid serving as the acceptor solution. Matrix components in body fluids were efficiently retained on the SLM and did not interfere with subsequent analysis. Capillary electrophoresis with capacitively coupled contactless conductivity detection was used for determination of 17 underivatized amino acids in background electrolyte solution consisting of 2.5 M acetic acid. Parameters of EME, such as composition of SLM, pH and composition of donor and acceptor solution, agitation speed, extraction voltage, and extraction time were studied in detail. At optimized conditions, repeatability of migration times and peak areas of 17 amino acids was better than 0.3% and 13%, respectively, calibration curves were linear in a range of two orders of magnitude (r(2)=0.9968-0.9993) and limits of detection ranged from 0.15 to 10 μM. Endogenous concentrations of 12 amino acids were determined in EME treated human serum, plasma, and whole blood. The method was also suitable for simple and rapid pretreatment and determination of elevated concentrations of selected amino acids, which are markers of severe inborn metabolic disorders.  相似文献   

5.
Emodin and physcion are abundant anthraquinone compounds found in the traditional Chinese medicinal herb Polygonum cuspidatum Sied. et Zucc. In this paper, emodin and physcion were successfully extracted with supercritical CO2 plus ethanol modifier after the extraction conditions were optimized with uniform design-sequential optimization. Results showed that the ethanol modifier concentration was the main factor for the effective extraction of the emodin. The optimal extraction condition was obtained: 20 MPa, 30 degrees C, and 95% ethanol, at which the yields of emodin and physcion were 0.616 and 0.178 g/100 g, respectively. The yield obtained by supercritical fluid extraction (SFE) was a little lower than that obtained by sonication extraction (SE). The crude extract obtained by SFE was further isolated and purified by semipreparative chromatography with the mobile phase composed of methanol-water (90:1, v/v). Emodin and physcion were obtained with purity 98.6 and 99.1%, respectively, when determined by HPLC, and identification was performed by retention time and UV spectra of the standards. The result suggested that SFE is an alternative and promising method for extraction of the two compounds from P. cuspidatum owing to its environment-friendly properties and fewer coextracts.  相似文献   

6.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and online isolation of the unstable compounds from Rosa damascene in a single extraction and separation operation in two stages. The solvent systems of SFE/HSCCC were optimized with the help of multiexponential function model. At the first stage, the upper phase of the solvent system of n‐butanol–tert‐butyl methyl ether–acetonitrile–0.1% aqueous TFA (1.7:1.0:0.8:4.0, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, and the target compounds were eluted with the corresponding lower phase to separate the hydrophobic compounds. At the second stage, the upper phase of the solvent system of n‐hexane–ethyl acetate–methanol–water (3.2:1.0:2.8:2.6, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the moderate hydrophobic compounds. Six compounds including formononetin, delphinidin, cyaniding, 5,6,4′‐trihydroxy‐7,8‐dimethoxy flavone, 5,3′‐dihydroxy‐7,8‐dimethoxy flavone, and 5‐hydroxy‐6,7,8,3′,4′‐pentamethoxy flavone were successfully separated in one extraction–separation operation within 300 min. The targeted compounds were identified by MS and NMR spectroscopy. This research has opened up great prospects for industrial application of SFE/HSCCC to the extraction and separation of unstable compounds.  相似文献   

7.
A rapid supercritical fluid extraction (SFE) procedure for the isolation of five of the most common sunscreen agents (2-ethylhexyl-p-dimethylaminobenzoate, 2-hydroxy-4-methoxybenzophenone, 2-ethylhexyl-p-methoxycinnamate, 4-methylbenzylidene camphor and 4-tert.-butyl-4′-methoxydibenzoylmethane) from cosmetic products is described. Investigation of the factors affecting the extraction efficiency in SFE indicated that sunscreen recoveries were affected mainly by the supercritical CO2 pressure and by the trapping method. The sunscreens were analyzed by reversed-phase high-performance liquid chromatography after a 10-min extraction of the cosmetic product with CO2 at 250 bar and 40°C, using sequential glass surface and C18 sorbent as collection system. A quantitative comparison of SFE with a liquid extraction procedure was performed on commercial cosmetics. The SFE method yielded recoveries higher than 94.8% compared with conventional liquid extraction and exhibited a precision better than 5.3% relative standard deviation. Moreover, SFE minimized sample handling, reduced the consumption of harmful solvents and afforded a more effective purification of the cosmetic matrices.  相似文献   

8.
In the present paper a new extraction technique based on the combination of solid-phase/supercritical-fluid extraction (SPE/SFE) with subsequent reversed-phase HPLC is described. The SPE/SFE extractor was originally constructed from SPE-cartridge incorporated into the SFE extraction cell. Selected groups of benzoic acid derivatives (p-hydroxybenzoic, protocatechuic, gallic, vanillic and syringic acid), hydroxybenzaldehydes (4-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde) and cinnamic acid derivatives (o-coumaric, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acid) were extracted. Cyclic addition of binary extraction solvent system based on methanol:water (1:1, v/v) and methanol/ammonia aqueous solution was used for extraction at 40 MPa and 80 °C. The p-hydroxybenzoic, protocatechuic, vanillic, syringic, caffeic and chlorogenic acid; 4-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde were identified by HPLC-electrospray mass spectrometry in SPE/SFE extracts of acid hydrolyzates of microalga (Spongiochloris spongiosa) and cyanobacterial strains (Spirulina platensis, Anabaena doliolum, Nostoc sp., and Cylindrospermum sp.). For the identification and quantification of the compounds the quasi-molecular ions [M−H] and specific fragments were analysed by quadrupole mass spectrometry analyzer. Our analysis showed that the microalgae and cyanobacteria usually contained phenolic acids or aldehydes at μg levels per gram of lyophilized sample. The proposed SPE/SFE extraction method would be useful for the analysis of different plant species containing trace amount of polar fraction of phenols.  相似文献   

9.
Le Floch F  Tena MT  Ríos A  Valcárcel M 《Talanta》1998,46(5):1123-1130
A clean, highly selective supercritical fluid extraction (SFE) method for the isolation of phenols from olive leaf samples was examined. Total phenol extracts were determined using the Folin-Ciocalteu reagent. Dried, ground, sieved olive leaf samples (30 mg) are subjected to SFE, using carbon dioxide modified with 10% methanol at 334 bar, 100 degrees C (CO(2) density 0.70 g ml(-1)) at a liquid flow-rate of 2 ml min(-1) for 140 min. Diatomaceous earth is used to reduce the void volume of the extraction vessel. The influence of extraction variables such as modifier content, pressure, temperature, flow-rate, extraction time, and collection/elution variables, were studied. Supercritical fluid extracts were screened for acid compounds such as carboxylic acids and phenols using Electrospray-MS (in the negative ionization mode). SFE was found to produce higher phenol recoveries than sonication in liquid solvents such as n-hexane, diethyl ether and ethyl acetate. However, the extraction yield obtained was only 45%, using liquid methanol.  相似文献   

10.
A method using off-line supercritical fluid extraction (SFE) and micro liquid chromatography (μLC) with UV detection at 260 nm, was developed for selective determination of fenpyroximate in apple samples. The packed capillary liquid chromatography method utilises 20 μl injection volumes with on-column focusing. A 350×0.32 mm capillary column packed with Kromasil 100-C18 of 5 μm particle size was used with a mobile phase of acetonitrile–10 mM ammonium acetate (85:15, v/v) at a flow of 5 μl/min. A two-step SFE procedure was used to extract fenpyroximate selectively in 2 g apple samples, with Hydromatrix (HMX) added as a water absorbent at a 1:1 (w:w) ratio. Fenpyroximate was extracted at 200 bar and 90°C for 15 min using carbon dioxide at a flow of 2 ml/min, and solvent trapping collection in 10 ml acetonitrile. The volume of the acetonitrile extract was reduced by evaporation and water was added to a final composition of acetonitrile–water (40:60, v/v). The resulting 2.0 ml solution was filtered using a 0.45 μm poly(vinylidene difluoride) syringe filter before μLC analysis. Validation of the method was accomplished with apple samples spiked with fenpyroximate, covering the range of 0.1 to 1.0 μg/kg. The within-day and between-day repeatabilities were in the range 4–18% relative standard deviation. Accuracy, measured as recovery, was found to be approximately 60%. Apple samples from a field treated with fenpyroximate were analysed. None of the samples contained fenpyroximate above the quantification level.  相似文献   

11.
A method using supercritical fluid extraction (SFE) and gas chromatography-mass spectrometry (GC/MS) for obtaining the amino acid profiles of genetically modified maize and soybean is proposed. SFE is carried out in a homemade modular system where amino acids are extracted with carbon dioxide modified with 35% of methanol, in conditions optimized by a central composite design. Once extracted, the amino acids are determined by GC/MS. The method has been applied to three samples of maize derived from MON810, other from NK 603 and a Roundup ready soybean sample. The profiles are compared with those obtained from their corresponding isogenic non-transgenic varieties. Although differences are directly observed in some cases by visual comparison of the chromatograms, the application of ANOVA shows more significant differences. In general terms, isogenic varieties seem to have higher content of several amino acids.  相似文献   

12.
This study describes a rapid and sensitive analytical method for the determination of amino acids in foods and drinks. The method entailed dilution or extraction of amino acids from foods using the mixture of acetonitrile and 0.1% aqueous formic acid (50:50, v/v). Chromatographic separation of underivatized amino acids was performed using a hydrophilic interaction liquid chromatography within a runtime of 6 min. Both hydrophobicity and charge of the side chain played important roles on the elution order of amino acids under the chromatographic conditions. High-resolution mass spectrometry allowed qualitative and quantitative detection of amino acids in complex food matrices. Its response was found linear over a concentration range of 0.25-10 μg/ml. The method could be successfully applied to various foods and drinks to profile individual amino acids. Mean percentage recoveries of amino acids from different matrices were 88.5% or higher with residual standard deviation of less than 5.0%.  相似文献   

13.
Superheated water extraction, steam distillation and SFE of peppermint oil   总被引:2,自引:0,他引:2  
Superheated water extraction, steam distillation and supercritical fluid extraction (SFE) are compared for extraction of l-menthol, menthone, eucalyptol and other components of peppermint (mentha piperita) leaves. Different temperatures and pressures were investigated. SFE results at 25/40 °C and 6.5/8/10 MPa were comparable with those reported in the literature. Although SFE is a gentle way of extracting thermally unstable compounds, this method is too slow for commercial use in comparison with steam distillation at 100 °C. Superheated water extraction at 125/150 °C and 1–2 MPa exhibits higher extraction efficiency than the SFE method. Comparison of all experiments under the chosen conditions shows steam distillation to be the most effective extraction method. Received: 18 January 1998 / Revised: 9 April 1999 / Accepted: 15 April 1999  相似文献   

14.
A method consisting of automated supercritical fluid extraction (SFE) with simultaneous cleanup by a solid-phase trap was developed for fast analysis of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in soil. SFE was optimised to replace conventional liquid-based methods in routine analyses of PCDD/PCDFs in sawmill soil contaminated by a chlorophenol formulation. PCDD/PCDFs were quantitatively extracted in 60 min using CO2 at 400 atm and 100 degrees C without a modifier. A trap containing a small amount of activated carbon mixed with Celite efficiently collected PCDD/PCDFs after SFE. After SFE co-extracted impurities were eluted out from the trap with 4 ml of hexane and PCDD/PCDFs were eluted with 10 ml of toluene. The concentrations and TCDD-equivalent of PCDD/PCDFs corresponded to the results of traditional solvent extraction method (Soxhlet) in six sawmill soils tested. The performance of the trap was maintained over a long period of time (nearly 100 extractions).  相似文献   

15.
Two different relatively simple, commercially available supercritical fluid extractors (SFE), Leco and Foss-Tecator, were tested for the determination of total fat content in meat and meat products. The fatty acid composition in meat and meat products was also determined after the Foss-Tecator extraction in an aliquot of the extract. Total fat was determined by weighing after the different extraction procedures and the fatty acid composition by gas chromatography after hydrolysis and methylation of the extract. The results for total fat content agreed well with results from a standard method of Schmid, Bondzynski, and Ratzlaff, which uses conventional solvent extraction. Fatty acid composition was compared with the Bligh and Dyer extraction, and showed good agreement. The average relative difference between SFE and Bligh and Dyer of all fatty acids in the sample was <3% for acids exceeding 0.5% of total fatty acid amount. The advantages of SFE over traditional methods are a much lower consumption of hazardous organic solvents and shorter extraction times. To obtain quantitative recoveries by SFE, ethanol was added to the extraction cells before extraction.  相似文献   

16.
A two-step supercritical fluid extraction (SFE) method has been developed for the analysis of oxygenated and nitrated polycyclic aromatic hydrocarbons (oxy- and nitro-PAHs, respectively) present in urban aerosol samples. The proposed SFE procedure first involves an extraction step using pure CO2 in order to remove the less polar compounds from the matrix and a second consecutive step using toluene-modified CO2. The oxy- and nitro-PAHs are obtained in the second step. Parameters affecting both collection efficiencies and the selective extraction of oxy- and nitro-PAHs in the second SFE step were optimised. Analysis of the extracts was performed using gas chromatography with electron-capture detection and coupled to mass spectrometry. The proposed SFE method was compared with a conventional extraction technique such as sonication and good agreement in the results was obtained. Nevertheless, clean up of sonication extracts was needed, whereas no purification was necessary for SFE extracts. The SFE method was applied to the analysis of oxy- and nitro-PAHs in urban aerosol samples and 9-fluorenone, 9,10-anthraquinone, 2-methyl-9,10-anthraquinone, benzanthrone, benz[a]anthracene-7,12-dione and 1-nitropyrene were identified at concentrations ranging between 15 and 364 pg m(-3).  相似文献   

17.
Supercritical fluid extraction (SFE) of grape seed oil was performed to study the effect of various parameters such as pressure, temperature and the particle size of the sample on the yield and composition of oil using an analytical-scale SFE system. Then the extraction was scaled up by 125 times using a preparative SFE system under the optimized conditions of high pressure (30-40 MPa) and low temperature (35-40 degrees C) with medium particle size (20-40 mesh). The maximum yield of the oil can reach 6.2% with pure supercritical CO2 and 4.0% more oil can be obtained by adding 10% of ethanol as modifier. The unsaturated fatty acids (UFSs) make up about 70% in the oil on the basis of free fatty acids. The grape seed oil was then subjected to separation and purification for free fatty acids after saponification by high-speed counter-current chromatography coupled with evaporative light scattering detection (ELSD). The separation of 1.0 g of oil can yield about 430 mg pure linoleic acid at 99% purity. The fatty acids were analyzed by HPLC-ELSD.  相似文献   

18.
Peng J  Dong F  Xu Q  Xu Y  Qi Y  Han X  Xu L  Fan G  Liu K 《Journal of chromatography. A》2006,1135(2):151-157
Supercritical fluid extraction (SFE) of daphnoretin, 7-methoxy-daphnoretin and 1,5-diphenyl-1- pentanone from Stellera chamaejasme L. was performed. An orthogonal L9 (3)4 test design was applied to select the optimum extraction parameters including pressure, temperature, modifier and sample particle size on yield using an analytical-scale SFE system. The process was then scaled up by 100 times using a preparative SFE system under the optimized conditions of 25 MPa of pressure, 45 degrees C of temperature, 40-60 mesh of sample particle size and modified CO2 with 20% methanol. The yield of the crude extract from preparative SFE was 2.65%, which contained daphnoretin 25.2%, 7-methoxy-daphnoretin 22.8% and 1,5-diphenyl-1-pentanone 21.1%, respectively. Then the crude extract was successfully isolated and separated by preparative high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (10:13:13:10, v/v) by increasing the flow-rate of the mobile phase stepwise from 1.0 to 2.0 ml/min after 90 min. The target compounds isolated and purified by HSCCC were analyzed by high-performance liquid chromatography (HPLC). The separation produced total of 69.2mg of daphnoretin at 99.2% purity, 63.4 mg of 7-methoxy-daphnoretin at 98.7% purity and 58.3 mg of 1,5-diphenyl-1-pentanone at 98.1% purity from 300 mg of the crude extract in one-step separation. The recoveries of daphnoretin, 7-methoxy-daphnoretin and 1,5-diphenyl-1-pentanone were 90.8, 91.5 and 90.4%, respectively, in HSCCC isolation step and the chemical structure identification was carried out by MS, 1H NMR and 13C NMR.  相似文献   

19.
A novel sample-pretreatment method for time-of-flight secondary ion mass spectrometry (TOF-SIMS) was developed using supercritical fluid extraction (SFE). In SFE, the extraction efficiency of a certain organic matter is controlled by the pressure and temperature of supercritical CO2. Two-step SFE (1st step at 10 Mpa, 40 degrees C; 2nd step at 30 MPa, 120 degrees C) was applied to diesel exhaust particles containing many kinds of n-alkanes and aromatic species. n-Alkanes and polycyclic aromatic hydrocarbons (PAHs) were extracted in the 1st and 2nd steps, respectively. This selectivity was utilized for the sample preparation of TOF-SIMS analysis. Diesel exhaust particles after the 1st step of extraction were analyzed with TOF-SIMS, aiming at PAHs as analytical targets. The obtained spectrum was simplified, and mass peaks of individual PAHs were easily assigned, because unwanted compounds, like n-alkanes, were selectively removed by SFE. Furthermore, a simple calculation elucidated the outline of the spectrum.  相似文献   

20.
Leather samples were prepared and characterized as 'in house' matrix standards for the determination of fat. The Soxhlet standard method was used to establish the reference fat content in every standard sample. Sample homogeneity and stability were examined under specific storing conditions. The materials were subsequently used as matrix standards for the determination of fat in leather samples, using supercritical fluid extraction (SFE) with on-line piezoelectric detection. Real samples were weighed in the extraction SFE thimble, previously loaded with 1 g of diatomaceous earth. A temperature of 45 degrees C and a CO2 fluid density of 0.85 g ml-1 were used for extraction. The linear calibration range thus achieved was 0.001-0.040% m/m total fat (related to the weight of the leather) and the relative standard deviation +/- 3% (n = 11; P = 0.05). The results were compared with those obtained with the Soxhlet method and no significant differences were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号