首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorobis(2,2,2-trichloroethoxy)- and dichloro(2,2,2-trichloroethoxy)iron(III) have been synthesized. They react with various oxygen and nitrogen donor ligands to yield adducts formulated as FeCl(OCH2CCl3)2 · 2 L or FeCl2(OCH2CCl3) · 2 L (L = ligand). The depressed magnetic moments of these compounds show the presence of strong antiferromagnetic interactions between iron atoms. The infrared and 1H nmr spectra establish the presence of bridging and terminal alkoxy groups and ligands (L) are cis to each other. The electronic spectra of these complexes indicate that each iron atom is approximately octahedrally coordinated. Mass spectral data are in favour of dimeric structure for the title compounds.  相似文献   

2.
Condensation of phthalodinitrile and 2-amino-5,6,7,8-tetrahydroquinoline gave the bis(2-pyridylimino)isoindole protioligand 1 (thqbpiH) in high yield. Deprotonation of thqbpiH (1) using LDA in THF at -78 °C yields the corresponding lithium complex [Li(THF)(thqbpi)] (2) in which the lithium atom enforces almost planar arrangement of the tridentate ligand, with an additional molecule of THF coordinated to Li. Reaction of cobalt(II) chloride or iron(II) chloride with one equivalent of the lithium complex 2 in THF led to formation of the metal complexes [CoCl(THF)(thqbpi)] (3a) and [FeCl(THF)(thqbpi)] (3b). The paramagnetic susceptibility of 3a,b in solution was measured by the Evans method (3a: μ(eff) = 4.17 μ(B); 3b: μ(eff) = 5.57 μ(B)). Stirring a solution of 1 and cobalt(II) acetate tetrahydrate in methanol yielded the cobalt(II) complex 4 which was also accessible by treatment of 3a with one equivalent of silver or thallium acetate in DMSO. Whereas 3a,b were found to be mononuclear in the solid state, the acetate complex 4 was found to be dinuclear, the two metal centres being linked by an almost symmetrically bridging acetate. For all transition metal complexes paramagnetic (1)H as well as (13)C NMR spectra were recorded at variable temperatures. The complete assignment of the paramagnetic NMR spectra was achieved by computation of the spin densities within the complexes using DFT. The proton NMR spectra of 3a and 3b displayed dynamic behaviour. This was attributed to the exchange of coordinating solvent molecules by an associative mechanism which was analysed using lineshape analysis (ΔS(≠)= -154 ± 25 J mol(-1) K(-1) for 3a and ΔS(≠) = -168 ± 15 J mol(-1) K(-1) for 3b).  相似文献   

3.
4.
Molecular catalysts for organic synthesis should be constructed to be tailored to target reactions and their desirable conditions. In our search for them, we have studied new types of transition metal molecular catalysts dressed with a tridentate N,C,N modular ligand, which consists of a C2-symmetric side-by-side phenyl group with chiral bis(oxazolinyl) substituents. The ligand, 2,6-bis(oxazolinyl)phenyl abbreviated as Phebox, can connect covalently to transition metals by the central carbon atom. Here, we review our recent work on the chemistry of Phebox and its metal complexes, including preparation, structural analysis, asymmetric Lewis acid catalysis, asymmetric hydrosilylation, asymmetric conjugate reduction, asymmetric reductive aldol reaction, and organometallic reactions.  相似文献   

5.
6.
7.
8.
Two coordination polymers, namely {[Co2(L1)2(btec)]?4H2O}n (1) and [Co(L2)(btec)0.5(H2O)]n (2) [L1 = 1,3-bis(5,6-dimethylbenzimidazole)propane, btec = 1,2,4,5-benzenetetracarboxylate, L2 = 1,2-bis(5,6-dimethylbenzimidazole-1-ylmethyl)benzene], have been synthesized and characterized by physicochemical and spectroscopic methods as well as single-crystal diffraction. The cobalt(II) atoms display different environments with a tetrahedral geometry in 1 and trigonal–bipyramidal geometry in 2. Both complexes show 2D layer structures with a rare binodal (3,4)-connected topology structure, named 3,4L13. Their catalytic activities were tested for the degradation of congo red azo dye in a Fenton-like process.  相似文献   

9.
By utilizing nicotinic acid as a co-ligand, two new azido-bridged cobalt(II) complexes with the formulae [Co(2)(N(3))(nic)(2)Cl(H(2)O)](n) (1) and [Co(N(3))(nic)](n) (2) (nic = nicotinate) have been synthesized under solvothermal condition and structurally characterized. Complex 1 exhibits a rare three-dimensional (3D) Kagomé topology with [Co4] units as connecting nodes. Complex 2 is also a 3D structure which contains 1D Co(II)-μ-1,1-azido chains as rod-shaped SBUs. Magnetic data analysis shows that ferromagnetic coupling intra-[Co4]-cluster and antiferromagnetic interaction inter-[Co4]-cluster exists in complex 1, while complex 2 exhibits metamagnetism with a critical field of 5.5 kOe.  相似文献   

10.
Summary New coordination compounds of NiII and CoII with dichloropyrimidinoguanidine (L) have been obtained and characterized by physico-chemical and spectroscopic methods. The complexes have the general formulae: [ML3](ClO4)2, [ML2(SO4)], [ML2(NCS)2], (M = Ni or Co), [NiL2(ClO4)2] and [CoL2](ClO4)2. The ligands are bonded to the metal ion via one nitrogen atom from the pyrimidine heterocyclic ring and one from the guanidine group.  相似文献   

11.
The complexes [Co(C4H4O4)]n (1) and [Zn(im)2(C4H4O4)]n (2) (C4H4O4 = succinate dianion, suc; im = imidazole) have been synthesized solvothermally and characterized by elemental analysis, IR, TG–DTA, and single-crystal X-ray diffraction techniques. Complex 1 is the first anhydrous member of the cobalt succinate family and has high thermal stability under a static air atmosphere, up to 425 °C, and complex 2 is a 1D coordination polymer. In addition, a new synthesis method and some properties of the known [Co(HCOO)2·2H2O]n (3) complex are reported. After in situ synthesis of 3 via decomposition of DMF at 140 °C, it was found that complex 3 can adsorb some solvents repeatedly and is selective for H2O.  相似文献   

12.
The novel porous [{M(F-pymo)(2)}(n)]2.5n H(2)O coordination networks (M=Co, Zn; F-pymo=5-fluoropyrimidin-2-olate), possessing sodalitic topology, have been synthesised and structurally characterised by means of powder diffraction methods. Thermodiffractometry demonstrated their plasticity: when heated up to 363 K, they reversibly transform into three-dimensional dehydrated [{M(F-pymo)(2)}(n)] species, with significantly different lattice parameters. Further heating induces irreversible polymorphic transformations into layered phases, in which the original MN(4) coordination sphere changes into an MN(3)O one. A mixed-metal phase, [{Co(x)Zn(1-x)(F-pymo)(2)}(n)]2.5n H(2)O, was also prepared, showing that zinc is preferentially inserted, when starting from a Co/Zn reagent ratio of 1:1. The solid-gas adsorption properties of the anhydrous 3D frameworks have been explored towards N(2), H(2) (77 K) and CH(4), CO(2) (273 K). These results show that these materials permit the diffusion of CO(2) molecules only. Remarkably, the CO(2) adsorption process for the [{Co(F-pymo)(2)}(n)] network proceeds in two steps: the first step takes place at low pressures (<600 kPa) and the second one above a threshold pressure of 600 kPa. By contrast, the [{Zn(F-pymo)(2)}(n)] network only permits CO(2) diffusion by applying pressures above 900 kPa. This type of behaviour is typical of porous networks with gated channels. The high CO(2) selectivity of these systems over the rest of the essayed probe gases is explained in terms of flexibility and polarity of the porous network. Finally, the magnetic studies on the Co(II) systems reveal that the as synthesised [{Co(F-pymo)(2)}(n)]2.5n H(2)O material behaves as an antiferromagnet with a T(N) of about 29 K. At variance, the [{Co(F-pymo)(2)}(n)] layered phase shows an unusually weak ferromagnetic ordering below 17 K, arising from a spin-canting phenomenon.  相似文献   

13.
14.
Enantiopure 2-(chlorocarbonyl)phosphametallocenes [MCp*(2-{COCl}-3,4-Me(2)-5-Ph-PC(4))] (M = Fe, Ru) react with phospholide anions to give 2-phosphametallocene-2'-acylphospholides K[MCp*(2-CO-2'-{3',4'-Me(2)-5'-PhPC(4)}-3,4-Me(2)-5-Ph-PC(4))] (M = Fe, Ru) and these have been converted into keto-bis-(2-phosphametallocene)s through reaction with [FeClCp*(tmeda)]; templation of this process with CuBr gives rise to the C(2)- (or pseudo-C(2)- when M = Ru) symmetric form of [{MCp*(3,4-Me(2)-5-Ph-PC(4))}(2)-2,2'-(CO)] (M = Fe, Ru; Fe, Fe) with high (>95%) diastereoselectivity. X-Ray structures of these ligands coordinated to [RuCp*Cl] and [PtCl(2)] centres show that the spatial orientation of the very flexible keto-bis-(2-phosphametallocene) structure is highly responsive to the coordination sphere of the chelated platinum or ruthenium centre.  相似文献   

15.
16.
17.
Dong Q  Rose MJ  Wong WY  Gray HB 《Inorganic chemistry》2011,50(20):10213-10224
Here we report the syntheses and crystal structures of a series of cobalt(II) and nickel(II) complexes derived from (R)NP2 ligands (where R = OMe(Bz), H(Bz), Br(Bz), Ph) bearing ethylene linkers between a single N and two P donors. The Co(II) complexes generally adopt a tetrahedral configuration of general formula [(NP2)Co(I)(2)], wherein the two phosphorus donors are bound to the metal center but the central N-donor remains unbound. We have found one case of structural isomerism within a single crystal structure. The Co(II) complex derived from (Bz)NP2 displays dual coordination modes: one in the tetrahedral complex [((Bz)NP2)Co(I)(2)]; and the other in a square pyramidal variant, [((Bz)NP2)Co(I)(2)]. In contrast, the Ni(II) complexes adopt a square planar geometry in which the P(Et)N(Et)P donors in the ligand backbone are coordinated to the metal center, resulting in cationic species of formula [((R)NP2)Ni(I)](+) with iodide as counterion. All Ni(II) complexes exhibit sharp (1)H and (31)P spectra in the diamagnetic region. The Co(II) complexes are high-spin (S = 3/2) in the solid state as determined by SQUID measurements from 4 to 300 K. Solution electron paramagnetic resonance (EPR) experiments reveal a high-spin/low-spin Co(II) equilibrium that is dependent on solvent and ligand substituent.  相似文献   

18.
Summary The electrochemical oxidation of anodic metal (nickel or cobalt) in MeCN solutions of 1-hydroxy-2-pyridinethione (HPT) gives [Ni(PT)2], [Co(PT)2] or [Co(PT)3]. When 1,10-phenanthroline (phen) or 2,2-bipyridine (bipy) are added to the electrolytic phase the product is a complex, [Ni(PT)2L] or [Co(PT)2L] (L = bipy or phen). The i.r., u.v. and 1H- and 13C-n.m.r. spectra of the complexes are discussed.This paper was presented at the 5th Inorganic Chemistry Meeting of the Royal Spanish Chemical Society, Tossa de Mar, Girona, Spain, September 1991.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号