首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The phase partition and site preference of Re atoms in a ternary Ni-Al-Re model alloy,including the electronic structure of different Re configurations,are investigated with first-principles calculations and atom probe tomography.The Re distribution of single,nearest neighbor(NN),next-nearest neighbor(NNN),and cluster configurations are respectively designed in the models withγandγphases.The results show that the Re atoms tend to enteringγphase and the Re atoms prefer to occupy the Al sites inγphase.The Re cluster with a combination of NN and NNN Re-Re pair configuration is not preferred than the isolated Re atom in the Ni-based superalloys,and the configuration with isolated Re atom is more preferred in the system.Especially,the electronic states are analyzed and the energetic parameters are calculated.The electronic structure analyses show there exists strong Ni-Re electronic interaction and it is mainly contributed by the d-d hybridization.The characteristic features of the electronic states of the Re doping effects are also given.It is also found that Re atoms prefer the Al sites inγside at the interface.The density of states at or near the Fermi level and the d-d hybridizations of NN Ni-Re are found to be important in the systems.  相似文献   

2.
杭阳  吴文志  于进  郭万林 《中国物理 B》2016,25(2):23102-023102
Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes.These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanicalelectric devices.  相似文献   

3.
<正>The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first-principles calculations.The band structure and density of states are calculated to discuss the electronic properties and orbital hybridized properties of the compound.The optical properties,including complex dielectric function,absorption coefficient,refractive index,reflectivity,and loss function,and the origin of spectral peaks are analysed based on the electronic structures.The presented results exhibit isotropic behaviours in a low and a high energy range and an anisotropic behaviour in an intermediate energy range.  相似文献   

4.
This paper investigates theoretically the electronic transmission spectra of the three terminal pyrene molecular bridge and the quantum current distribution on each bond by the tight-binding model based on nonequilibrium Green's function and the quantum current density approach, in which one π molecular orbital is taken into account per carbon atom when the energy levels and HOMO-LUMO gap are obtained. The transmission spectra show that the electronic transmission of the three terminal pyrene molecular bridge depends obviously on the incident electronic energy and the pyrene eigenenergy. The symmetrical and oscillation properties of the transmission spectra are illustrated. A novel plus-minus energy switching function is found. The quantum current distribution shows that the loop currents inside the pyrene are induced, and some bond currents are much larger than the input and the output currents. The reasons why the loop currents and the larger bond currents are induced are the phase difference of the atomic orbits and the degeneracy of the molecular orbits. The calculations illustrate that the quantum current distributions are in good agreement with Kirchhoff quantum current conservation law.  相似文献   

5.
A structurally stable two-dimensional carbon allotrope principles calculations. This allotrope can be formed of graphene is studied theoretically based on the first- by inserting acetylene and diacetylene fragments into β-graphyne. The calculations on structure and electronic energy spectra show that the carbon Kagome lattice is a structurally stable semimetal with the Dirac cones below the Fermi surface, in contrast to the Dirac points at the Fermi surface in intrinsic graphene.  相似文献   

6.
《中国物理 B》2021,30(6):67403-067403
High resolution angle resolved photoemission measurements and band structure calculations are carried out to study the electronic structure of BaMnSb_2. All the observed bands are nearly linear that extend to a wide energy range. The measured Fermi surface mainly consists of one hole pocket around Γ and a strong spot at Y which are formed from the crossing points of the linear bands. The measured electronic structure of BaMnSb_2 is unusual and deviates strongly from the band structure calculations. These results will stimulate further efforts to theoretically understand the electronic structure of BaMnSb_2 and search for novel properties in this Dirac material.  相似文献   

7.
The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopo- tential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the derivative of bulk modulus B~ are 3.872/~, 78.2 GPa, and 3.97, respectively. The results are in good agreement with the available experimental and theo- retical values. The electronic structure shows that cubic NaMgF3 is an indirect insulator with a wide forbidden band gap of Eg = 5.90 eV. The contribution of the different bands is analyzed by total and partial density of states curves. Population analysis of NaMgF3 indicates that there is strong ionic bonding in the MgF2 unit, and a mixture of ionic and weak covalent bonding in the NaF unit. Calculations of dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, optical reflectivity, and conductivity are also performed in the energy range 0 to 70 eV.  相似文献   

8.
The structural, electronic, and optical properties of rutile-, CaC12-, and PdF2-ZnF2 are calculated by the plane-wave pseudopotential method within the density functional theory. The calculated equilibrium lattice constants are in reasonable agreement with the available experimental and other calculated results. The band structures show that the rutile-, CaCl2-, and PdF2-ZnF2 are all direct band insulator. The band gaps are 3.63, 3.62, and 3.36 eV, respectively. The contribution of the different bands was analyzed by the density of states. The Mulliken population analysis is performed. A mixture of covalent and weak ionic chemical bonding exists in ZnF2. Furthermore, in order to understand the optical properties of ZnF2, the dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, and optical reflectivity are also performed in the energy range from 0 to 30 eV. It is found that the main absorption parts locate in the UV region for ZnF2. This is the first quantitative theoretical prediction of the electronic and optical properties of ZnF2 compound, and it still awaits experimental confirmation.  相似文献   

9.
High-level ab initio calculations of aluminum monoiodide(AlI) molecule are performed by utilizing the multireference configuration interaction plus Davidson correction(MRCI+Q) method. The core-valence correlation(CV) and spin–orbit coupling(SOC) effect are considered. The adiabatic potential energy curves(PECs) of a total of 13 Λ–S states and 24 ? states are computed. The spectroscopic constants of bound states are determined, which are in accordance with the results of the available experimental and theoretical studies. The interactions between the Λ–S states are analyzed with the aid of the spin–orbit matrix elements. Finally, the transition properties including transition dipole moment(TDM),Frank–Condon factors(FCF) and radiative lifetime are obtained based on the computed PEC. Our study sheds light on the electronic structure and spectroscopy of low-lying electronic states of the AlI molecule.  相似文献   

10.
The structural and elastic properties of ultrathin nickel nanowires are investigated by using molecular dynamics simulation with a Sutton-Chen potential. Helical multi-shell structures are obtained as the most stable structures for Ni nanowires with diameters of about 1 nm. The electronic states of these nanowires are computed and compared with that of Ni solid. The mechanical responses of the helical nanowires under tensile forces are simulated. We observe elastic deformation of nanowires characterized by periodic oscillations of the nanowire length under constant force. Within an elastic limit, both the atomic structures and the electronic structures remain stable under external tensile loading.  相似文献   

11.
彭菊  郁华玲  王之国 《中国物理 B》2009,18(12):5485-5490
This paper theoretically reports the nonlocal Andreev reflection and spin current in a normal metal-ferromagnetic metal-superconducting Aharonov--Bohm interferometer. It is found that the electronic current and spin current are sensitive to systematic parameters, such as the gate voltage of quantum dots and the external magnetic flux. The electronic current in the normal metal lead results from two competing processes: quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero spin-up electronic current (or spin-down electronic current) signals the existence of nonlocal Andreev reflection, and the presence of zero electronic current results in the appearance of pure spin current.  相似文献   

12.
The first fluorine-substituted hexabenzocoronene has been synthesized and its electronic structure and optical properties have been reported [Q. Zhang, et al., Org. Lett. 7 (2005) 5019]. In this letter, the electronic structure and excited state properties of the fluorine-substituted hexabenzocoronene are studied with quantum chemistry method as well as the transition and the charge difference densities. The transition densities show the orientations and strength of the dipole moments and the charge difference densities reveal the orientation and results of the intramolecular charge transfer. The calculated transition energies and oscillator strengths are consistent with the experimental data, and the theoretical results of transition and charge difference densities are valuable to understanding the excited state properties of the fluorine-substituted hexabenzocoronene.  相似文献   

13.
The emission yields of H, H2, H3 and heavy ions from carbon nanotubes under bombardments of Si and Si2 clusters in an energy range of 0.3-3 MeV per atom are measured by using the time-of-flight technique (TOF). The emission yields of the secondary ions increase with increasing energy of Si and the electronic stopping processes play an important role. The enhanced emission yields of secondary ions induced by Si2 clusters at the low energies are clearly seen and attributed to the vicinage effect of the nuclear collision processes of cluster constituents and the secondary ion emissions are still dominated by electronic stopping processes at high energies.  相似文献   

14.
The local crystal structures and electronic structures of LiMxFe1-xPO4 (M = Co, Ni, Rh) are studied through first-principles calculations. The lattice constants and unit cell volumes are smaller for the Co and Ni doped materials than for pure LiFePO4, while larger than for the Rh doped material. The local structures around M atoms in the doped materials are studied in details. The total density of states (DOS) and atomic projected DOS (PDOS) are all calculated and analysed in detail. The results give a reasonable prediction to the improvement of electronic conductivity through Fe-site doping in LiFePO4 material.  相似文献   

15.
First-principles local density functional calculations are presented for the compounds ZnGa2X4 (X = S, Se). We investigate the bulk moduli and electronic band structures in a defect chalcopyrite structure. The lattice constants and internal parameters are optimized. The electronic structures are analysed with the help of total and partial density of states. The relation between the cohesive energy and the unit cell volume is obtained by fully relaxed structures. We derive the bulk modulus of ZnGa2Xa by fitting the Birch-Murnaghan's equation of state. The extended Cohen's empirical formula agrees well with our ab initio results.  相似文献   

16.
李凤  陈志谦  李庆 《中国物理》2006,15(5):1075-1080
We have observed the thermodynamic properties of metallic superconductive nano-particles in the grand canonical ensemble; and the level distribution and the level correlation between the discrete electronic energy levels are considered in the calculation of the electronic spin susceptibility of the ensemble numerically. The quantum effect, even--odd effect and other special effects existing in the metallic nano-particles are also studied in this article.  相似文献   

17.
In the framework of the tight binding model,the electronic transmission properties of two-dimensional Penrose lattices with free boundary conditions are studied using the generalized eigenfunction method (Phys.Rev.B 60(1999)13 444).The electronic transmission coefficients for Penrose lattices with different sizes and widths are calculated,and the result shows strong energy dependence because of the quasiperiodic structure and quantum coherent effect.Around the Fermi level E=0,there is an energy region with zero transmission amplitudes,which suggests that the studied systems are insulating.The spatial distributions of several typical electronic states with different transmission coefficients are plotted to display the propagation process.  相似文献   

18.
The potential energy curves (PECs) of four electronic states (X1Σ+g , e3△u , a 3 Σ-u , and d 3Πg ) of an As 2 molecule are investigated employing the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent aug-cc-pV5Z basis set. The effect on PECs by the relativistic correction is taken into account. The way to consider the relativistic correction is to employ the second-order Douglas-Kroll Hamiltonian approximation. The correction is made at the level of a cc-pV5Z basis set. The PECs of the electronic states involved are extrapolated to the complete basis set limit. With the PECs, the spectroscopic parameters (Te , Re , ωe , ωexe , ωeye , αe , βe , γe , and Be ) of these electronic states are determined and compared in detail with those reported in the literature. Excellent agreement is found between the present results and the experimental data. The first 40 vibrational states are studied for each electronic state when the rotational quantum number J equals zero. In addition, the vibrational levels, inertial rotation and centrifugal distortion constants of d 3Πg electronic state are reported which are in excellent agreement with the available measurements. Comparison with the experimental data shows that the present results are both reliable and accurate.  相似文献   

19.
The potential energy curves (PECs) of three low-lying electronic states (X~1Σg~+,w~3△u,and W~1△u) of P2 molecule are investigated using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent basis set in the valence range.The PECs of the electronic states involved are modified by the Davidson correction and extrapolated to the complete basis set (CBS) limit.With these PECs,the spectroscopic parameters of the three electronic states are determined and compared in detail with the experimental data.The comparison shows that excellent agreement exists between the present results and the available experimental data.The complete vibrational states are computed for the w~3△u and W~1△u electronic states when the rotational quantum number J equals zero and the vibrational level G(v),the inertial rotation constant Bv,and the centrifugal distortion constant Dv of the first 30 vibrational states are reported,which accord well with the experimental data.The present results show that the two-point extrapolation scheme can obviously improve the quality of spectroscopic parameters and molecular constants.  相似文献   

20.
刘波  顾牡  刘小林  黄世明  倪晨  李泽仁  王荣波 《中国物理 B》2010,19(2):26301-026301
We have performed the first-principles linear response calculations of the lattice dynamics, thermal equation of state and thermodynamical properties of hcp Os metal by using the plane-wave pseudopotential method. The thermodynamical properties are deduced from the calculated Helmholtz free energy by taking into account the electronic contribution and lattice vibrational contribution. The phonon frequencies at Gamma point are consistent with experimental values and the dispersion curves at various pressures have been determined. The calculated volume, bulk modulus and their pressure derivatives as a function of temperature are in excellent agreement with the experimental results. The calculated specific heat indicates that the electronic contribution is important not only at very low temperatures but also at high temperatures due to the electronic thermal excitation. The calculated Debye temperature at a very low temperature is in good agreement with experimental values and drops to a constant until 100~K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号