首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过控制结晶法制备类球形Ni_(0.9)Co_(0.05)Al_(0.03)Zr_(0.02)(OH))2前驱体,与LiOH·H_2O均匀混合后,在750℃下于氧气中进行高温焙烧,最终合成正极材料Li(Ni_(0.9)Co_(0.05)Al_(0.05))O_2。扫描电子显微镜(SEM)结果显示前驱体及正极材料具有良好的形貌;X射线衍射(XRD)表明材料具有规整的六方单相层状α-Na FeO_2结构;能谱仪(EDXS)分析表明Zr元素在材料颗粒内部呈均匀分布。合成的Ni_(0.9)Co_(0.05)Al_(0.03)Zr_(0.02)O_2正极材料具有良好的电化学性能,在25℃,2.8~4.3 V充放电条件下,0.2C首次放电比容量为221.5 m Ah·g-1,充放电效率90.3%,2C倍率充放电条件下容量仍达到192.7 m Ah·g-1,100周循环后的容量保持率为92.2%。在55℃,2.8~4.3 V的高温充放电条件下,该材料的0.2C首次放电比容量可达236.2 m Ah·g-1,2C充放电倍率下循环100周容量保持率为85.1%。  相似文献   

2.
通过控制结晶法制备类球形Ni0.9Co0.05Al0.03Zr0.02(OH)2前驱体,与LiOH·H2O均匀混合后,在750℃下于氧气中进行高温焙烧,最终合成正极材料Li(Ni0.9Co0.05Al0.03Zr0.02)O2。扫描电子显微镜(SEM)结果显示前驱体及正极材料具有良好的形貌;X射线衍射(XRD)表明材料具有规整的六方单相层状α-NaFeO2结构;能谱仪(EDXS)分析表明Zr元素在材料颗粒内部呈均匀分布。合成的LiNi0.9Co0.05Al0.03Zr0.02O2正极材料具有良好的电化学性能,在25℃,2.8~4.3 V充放电条件下,0.2C首次放电比容量为221.5 mAh·g-1,充放电效率90.3%,2C倍率充放电条件下容量仍达到192.7 mAh·g-1,100周循环后的容量保持率为92.2%。在55℃,2.8~4.3 V的高温充放电条件下,该材料的0.2C首次放电比容量可达236.2 mAh·g-1,2C充放电倍率下循环100周容量保持率为85.1%。  相似文献   

3.
采用3种不同pH值的去离子水,NH4NO3和H2C2O4溶液对富锂层状正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2进行表面化学侵蚀改性,旨在改善其整体电化学性能。ICP结果表明pH值对材料中Li的析出具有显著影响。X射线衍射(XRD)表明表面化学侵蚀对材料的结构有影响。拉曼光谱(Raman spectroscopy)表明材料表面结构发生了变化。H2C2O4溶液侵蚀过的样品的首次效率有了极大提高,但同时中值电压和循环性能显著恶化。NH4NO3溶液侵蚀过的样品的首次效率从63%提高到了85%,1C倍率下的放电比容量从149 mAh·g-1提高到194 mAh·g-1,同时保持了温和的中值电压变化曲线。通过高分辨透射电镜(HRTEM),X射线光电子能谱(XPS)和电化学阻抗谱(EIS)对改性机理进行了研究。  相似文献   

4.
采用3种不同pH值的去离子水,NH4NO3和H2C2O4溶液对富锂层状正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2进行表面化学侵蚀改性,旨在改善其整体电化学性能。ICP结果表明pH值对材料中Li的析出具有显著影响。X射线衍射(XRD)表明表面化学侵蚀对材料的结构有影响。拉曼光谱(Raman spectroscopy)表明材料表面结构发生了变化。H2C2O4溶液侵蚀过的样品的首次效率有了极大提高,但同时中值电压和循环性能显著恶化。NH4NO3溶液侵蚀过的样品的首次效率从63%提高到了85%,1C倍率下的放电比容量从149 mAh·g-1提高到194 mAh·g-1,同时保持了温和的中值电压变化曲线。通过高分辨透射电镜(HRTEM),X射线光电子能谱(XPS)和电化学阻抗谱(EIS)对改性机理进行了研究。  相似文献   

5.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2(简称LNMCO),并使用Zr (CH3COO)4进行ZrO2的包覆改性。TEM测试结果显示纳米级的ZrO2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 mA·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 mAh·g-1,而原样则为75.1%,224.1 mAh·g-1,循环100圈之后,1.5% ZrO2包覆样品的放电比容量为248.3 mAh·g-1,容量保持率为88.9%,高于原样的195.9 mAh·g-1和87.4%。  相似文献   

6.
富锂层状氧化物作为锂离子电池正极材料具有高比容量优势.采用草酸盐共沉淀法制备Li(Li0.22Ni0.17Mn0.61)O2,并用YF3包覆电极.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线能谱分析(EDS)表征材料结构、观察材料形貌.结果表明,材料颗粒尺寸在100~200 nm范围,YF3包覆不会改变材料结构和形貌.电化学恒流充放电测试表明,YF3包覆Li(Li0.22Ni0.17Mn0.61)O2电极的比容量,尤其倍率比容量明显提高.60 mA·g-1电流密度下包覆电极材料30周循环后其比容量保持在220 mAh·g-1以上,1500 mA·g-1电流密度下其比容量仍可达150 mAh·g-1.电化学阻抗谱(EIS)测试结果表明,YF3包覆电极电荷转移电阻和扩散阻抗均明显降低,有利于电化学性能改善.  相似文献   

7.
通过共沉淀法制备了M(OH)2(M=Mn, Ni)前驱体, 并与LiOH混合, 合成了锂离子电池富锂正极材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2, 采用XRD、SEM和充放电实验对其进行表征. 研究结果表明, Li, Ni, Mn原子在M层中呈有序分布, 形成超结构; 富锂正极材料由亚微米的一次粒子团聚组成1~3 μm颗粒; 在2.0~4.8 V电位范围内, 充放电电流密度为10 mA/g时, 富锂正极材料表现出很高的可逆比容量, 达到200~240 mA·h/g, 同时具有良好的循环可逆性能.  相似文献   

8.
在镍钴铝酸锂正极材料 Li[Ni0.8Co0.15Al0.05]O2(NCA)制备过程中表面遗留的碱性物质会严重影响其循环稳定性能,针对这一难题,提出使用Y(PO3)3对其进行表面包覆改性,利用Y(PO3)3与表面残留的LiOH反应消除表面残碱,并探讨包覆改性对NCA整体性能的影响机制。测试分析结果表明,在低温煅烧过程中前驱体表面会形成均匀致密的Y(PO3)3和LiPO3包覆层,LiPO3有较高的离子电导率,双包覆层能够防止活性物质在电化学循环过程中与电解液相互接触时发生有害副反应,提高电极材料的循环稳定性。其中Y(PO3)3包覆量(质量分数)为1%的样品在0.1C下的首次库仑效率从未改性样品的78.65%提高到88.50%,在1C下循环150圈后容量保持率从59.38%提高到85.33%,相比于未改性样品具有更高的首次库仑效率和更优异的循环性能。  相似文献   

9.
以共沉淀法制备的[Mn0.54Ni0.13Co0.13]1.25CO3为前驱体,配锂焙烧获得了富锂锰基固溶体Li[Li0.2Mn0.54Ni0.13Co0.13]O2,然后分别用柠檬酸、柠檬酸三铵对该材料进行表面预处理。结果表明经柠檬酸(铵)处理后,Li[Li0.2Mn0.54Ni0.13Co0.13]O2中分别有16.37wt%和13.14wt%的锂被化学脱出。充放电测试结果表明,表面处理后的样品首次效率有了较大的提高(由63.5%分别提高到了80.2%和80.7%),0.2C循环40次容量保持率分别由91.43%提高到97.42%和92.72%,1C容量由处理前的149.5 mAh.g-1提高到179.5mAh.g-1和181.5 mAh.g-1,表明处理后材料的循环性能和倍率性能都得到了改善。这主要是由于柠檬酸(铵)处理,预先脱出了Li2MnO3组分中的部分Li2O,并在材料表面生成了类尖晶石结构的材料。  相似文献   

10.
在镍钴铝酸锂正极材料 Li[Ni0.8Co0.15Al0.05]O2(NCA)制备过程中表面遗留的碱性物质会严重影响其循环稳定性能,针对这一难题,提出使用Y(PO3)3对其进行表面包覆改性,利用Y(PO3)3与表面残留的LiOH反应消除表面残碱,并探讨包覆改性对NCA整体性能的影响机制。测试分析结果表明,在低温煅烧过程中前驱体表面会形成均匀致密的Y(PO3)3和LiPO3包覆层,LiPO3有较高的离子电导率,双包覆层能够防止活性物质在电化学循环过程中与电解液相互接触时发生有害副反应,提高电极材料的循环稳定性。其中Y(PO3)3包覆量(质量分数)为1%的样品在0.1C下的首次库仑效率从未改性样品的78.65%提高到88.50%,在1C下循环150圈后容量保持率从59.38%提高到85.33%,相比于未改性样品具有更高的首次库仑效率和更优异的循环性能。  相似文献   

11.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C 包覆层的层状富锂固溶体材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2. 通过X 射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X 射线能量散射谱(EDS)方法,研究了Ag/C 包覆层对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响. 结果表明,Ag/C 包覆层的厚度约为25 nm,Ag/C 包覆在保持了固溶体材料α-NaFeO2 六方层状晶体结构的前提下,显著地改善了Li[Li0.2Mn0.54Ni0.13Co0.13]O2 的电化学性能. 在2.0-4.8 V(vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30 次循环后,Ag/C 包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%. 循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒的界面膜电阻与电化学反应电阻.  相似文献   

12.
采用浓度梯度加料的方式,首先沉淀制备了核为Ni(OH)2、壳为镍钴锰氢氧化物浓度梯度包覆的复合前驱体,然后配锂高温焙烧,合成了梯度包覆的镍酸锂复合正极材料Li[Ni0.92Co0.04Mn0.04]O2。采用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试等方法对材料的结构、表观形貌及电化学性能进行了表征。结果表明,该材料具有良好的六方单相层状α-NaFeO2结构,呈类球型状。切面元素线扫描显示该材料的包覆壳层中主要金属元素呈梯度变化。同时该新型梯度包覆的镍酸锂复合正极材料表现出了优越的电化学性能:在25℃下,2.8~4.3 V充放电范围,0.1C首次放电比容量可达198.3 mAh.g-1,循环40次容量保持96.8%;1C和2C倍率下放电比容量可达175 mAh.g-1和165.1 mAh.g-1。55℃下,该材料首次放电比容量可达236.1 mAh.g-1,循环40次容量仍能保持77.5%。  相似文献   

13.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li_(1/3)Mn_(2/3)]O2·0.4LiNi_(5/12)Mn_(5/12)Co_(1/6)O_2(简称LNMCO),并使用Zr(CH3COO)4进行ZrO_2的包覆改性。TEM测试结果显示纳米级的ZrO_2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO_2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 m A·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 m Ah·g-1,而原样则为75.1%,224.1 m Ah·g-1,循环100圈之后,1.5%ZrO_2包覆样品的放电比容量为248.3 m Ah·g-1,容量保持率为88.9%,高于原样的195.9 m Ah·g-1和87.4%。  相似文献   

14.
通过LiNO3与Mn(NO3)2的混合溶液与LiNi1/3Co1/3Mn1/3O2粉体共混干燥后在900℃热处理12 h制备了xLi2MnO3.(1-x)LiNi1/3Co1/3Mn1/3O2(x=0.1、0.2、0.3和0.4)固溶体。随着x的增加,固溶体的XRD峰强度减弱,峰形变宽,而在20°~30°间的结构特征峰(LiMn6)更加明显;尽管固溶体的外观形貌为团聚状,但组成其的单颗粒平均粒径随着x增大,由x=0.1时的250 nm增大到x=0.4时的350 nm。随着充放电截止电压的升高,固溶体的放电比容量增大;在2.5~4.6 V间充放电,当x=0.2时,充放电的极化最小,放电平台最高;不同倍率充放电循环21周后发现随着x的增大,容量保持率从91.2%增加大105.6%。研究结果表明,Li2MnO3可以改善LiNi1/3Co1/3Mn1/3O2材料的电化学性能。  相似文献   

15.
采用低温燃烧法合成了锂离子电池正极材料xLi2MnO3-(1-x)LiNi0.7Co0.3O2,对合成产物的结构、形貌和电化学性能进行了系统的研究, 通过单因素试验对合成条件和材料的组成进行了优化。结果表明:采用低温燃烧法合成的富锂层状正极材料具有α-NaFeO2型层状结构、球状形貌和良好的电化学性能;其最佳合成条件为:回火温度850℃, 回火时间20 h;Li2MnO3的最佳配比为x=0.7.在此条件下合成的0.7Li2MnO3-0.3LiNi0.7Co0.3O2,最高放电比容量达到263.1 mAh·g-1,并具有良好的循环性能和倍率性能。  相似文献   

16.
王洪  张伟德 《应用化学》2013,30(6):705-709
用共沉淀法合成了富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2,并对其表面进行Al2O3包覆。采用XRD、SEM和电化学测试等方法对样品进行表征。结果表明,与Li[Li0.2Mn0.4Fe0.4]O2相比,包覆改性后的Li[Li0.2Mn0.4Fe0.4]O2具有较好的电化学性能,其初始放电容量未明显降低,而循环寿命大大提高,4.0%Al2O3包覆处理的富锂正极材料经50次充放电循环后,容量衰减量在9%左右。  相似文献   

17.
采用喷雾干燥法制备了xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)系列富锂层状固溶体正极材料, 并通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、电化学阻抗测试(EIS)以及充放电测试等多种手段研究了样品组分中Li2MnO3 含量变化对材料结构及电化学性能的影响.研究发现, 材料的微观结构随着Li2MnO3含量的增加而逐渐发生转变.当x≤0.2时, 样品的微观结构与其母体材料LiNi5/12Mn5/12Co2/12O2相似; 而当x≥0.4时, 样品的微观结构与Li2MnO3有很高的相似性.当x=0.3时, 材料表现出两相共存的特征.HRTEM结果显示, 随着Li2MnO3含量的增加, 样品中过渡金属原子的排列逐渐由长程有序转变为长程无序而短程有序, 并且在高Li2MnO3含量的样品中观察到了金属阳离子混排的现象.充放电测试结果表明, 当x≤0.6时, 材料的放电比容量随着x的增加而增加; 当x>0.6时, 其放电比容量则随着x的增加而下降; 当x=0.6时, 放电比容量最高, 室温及高温(50℃)下分别为260 和304 mA·h/g.EIS研究结果表明, 这种微观结构上由有序向无序的转变会导致材料电荷转移阻抗的增加, 进而影响材料的电化学性能.  相似文献   

18.
以LiOH.H2O、Mn(CH3COO)2.4H2O和Ni(CH3COO)2.4H2O为原料,分别用柠檬酸(CA)与乙二胺四乙酸(EDTA)为配位剂,采用溶胶凝胶法结合固相烧结法制备富锂固溶体正极材料Li[Li0.2Ni0.2Mn0.6]O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、激光粒度仪对所得样品的结构、形貌、粒径分布进行了表征,并测试了材料的电化学性能。采用CA配位制备的材料的电化学性能优于用EDTA配位制备的材料的电化学性能,室温下以18 mA.g-1的电流密度,在2.0~4.8 V电压范围内充放电,用CA制备的材料首次充电比容量高达324 mAh.g-1,首次库伦效率达82%;在180 mA.g-1的电流下,其可逆比容量保持在120 mAh.g-1。  相似文献   

19.
郑曦  曹林  朱文涛  邱新平 《化学学报》2007,65(7):571-574
利用高温固相法制备了具有层状结构的Li(Li0.15Ni0.21Fe0.21Mn0.45)O2阴极材料, 通过ICP-AES测定了各金属含量, XRD研究表明该材料在充放电过程中发生了结构变化. 进一步的电化学表征说明材料在结构转变后具有突出的高温循环性能(55 ℃), 以300 mA/g (2C)的电流密度循环428周后, 仍然能够保持80%的初始放电容量.  相似文献   

20.
将铝溶液按3种不同的流速连续注入,用联合共沉淀结晶控制法合成了具有核壳结构的Ni0.80Co0.15Al0.05(OH)2前驱体,即内核为均相组成的Ni0.88Co0.12(OH)2,外壳为Ni、Co和Al含量呈连续变化的Ni0.72Co0.18Al0.10(OH)2。将该前驱体与LiOH·H2O混合均匀,在700℃的氧气气流下进行煅烧,通过控制煅烧时间使材料中Ni、Co和Al扩散形成含量呈连续梯度变化的且具有类球形形貌的LiNi0.80Co0.15Al0.05O2正极材料。梯度结构中Ni、Co和Al的分布情况直接影响材料的电化学性能和结构稳定性。当煅烧时间为12h时,从颗粒的核心到表面,Ni含量(原子分数)由0.855下降至0.732,Al含量由0.003增加至0.115,Co含量维持在0.142~0.163之间,而表面组成为LiNi0.732Co0.153Al0.115O2。此时材料具有良好完整的层状结构且Li+/Ni2+混排程度最低,在0.2C下的放电比容量为201.3mAh·g-1,略低于均相LiNi0.80Co0.15Al0.05O2的放电比容量(205.8mAh·g-1);以0.2C充电、1C放电循环200周后,其容量保留率为71.6%,优于均相组成的材料(54.6%)。这是因为镍含量低而铝、钴含量高(相对于均相材料)的外层可以有效抑制充放电循环过程中引起颗粒体积的各向异性变化,减少电极极化,从而减缓极片表面裂纹的生成和扩展,降低电池的电荷传递阻抗,从而提高循环稳定性和结构稳定性。该材料合成过程中只有在铝溶液流速切换时使pH值发生小幅度的波动,但很快恢复到稳定,可以保证前驱体具有良好的结晶性,使核壳结构易设计、控制;而后通过调控煅烧时间合成LiNi0.80Co0.15Al0.05O2,有利于进一步地精准设计材料的浓度梯度结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号