首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g~(-1),3C时放电容量仍然可保持在160.5 m Ah·g~(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。  相似文献   

2.
通过改变金属离子的浓度比例,采用连续控制结晶法制备出镍钴锰金属元素连续浓度梯度变化的前驱体[Ni_(0.85)Co_(0.08)Mn_(0.07)](OH)_2。再与LiOH·H_2O混合,通过高温固相法得到全梯度材料Li[Ni_(0.85)Co_(0.08)Mn_(0.07)]O_2。XRD结果表明该梯度材料阳离子混排程度比纯相Li[Ni_(0.85)Co_(0.08)Mn_(0.07)]O_2更低,具有更好的层状结构。扫描电镜结果显示Li[Ni_(0.85)Co_(0.08)Mn_(0.07)]O_2具有球形形貌,粒径分布比较集中,颗粒平均粒径分布在11.5~12μm,切面元素扫描显示沿着球径方向从球心到外壳,镍含量越来越低,而钴锰的含量越来越高。越靠近颗粒表面,镍的含量越低,而钴锰的含量越高。电材料在0.1C放电倍率下首次放电比容量可达204.3 mAh·g~(-1),1C放电倍率的首次放电比容量为185.3 mAh·g~(-1),循环100次后,仍有164.7 mAh·g~(-1),容量保持率达89.17%。在高温55℃环境下,1C首次放电比容量可达202.7 mAh·g~(-1),容量保持率为85.84%,性能均好于纯相Li[Ni_(0.85)Co_(0.08)Mn_(0.07)]O_2。  相似文献   

3.
通过控制结晶法制备类球形Ni_(0.9)Co_(0.05)Al_(0.03)Zr_(0.02)(OH))2前驱体,与LiOH·H_2O均匀混合后,在750℃下于氧气中进行高温焙烧,最终合成正极材料Li(Ni_(0.9)Co_(0.05)Al_(0.05))O_2。扫描电子显微镜(SEM)结果显示前驱体及正极材料具有良好的形貌;X射线衍射(XRD)表明材料具有规整的六方单相层状α-Na FeO_2结构;能谱仪(EDXS)分析表明Zr元素在材料颗粒内部呈均匀分布。合成的Ni_(0.9)Co_(0.05)Al_(0.03)Zr_(0.02)O_2正极材料具有良好的电化学性能,在25℃,2.8~4.3 V充放电条件下,0.2C首次放电比容量为221.5 m Ah·g-1,充放电效率90.3%,2C倍率充放电条件下容量仍达到192.7 m Ah·g-1,100周循环后的容量保持率为92.2%。在55℃,2.8~4.3 V的高温充放电条件下,该材料的0.2C首次放电比容量可达236.2 m Ah·g-1,2C充放电倍率下循环100周容量保持率为85.1%。  相似文献   

4.
以镍钴氢氧化物、异丙醇铝为原料,采用水解法合成三元前驱体Ni_(0.88)Co_(0.07)Al_(0.05)O_2,再与锂盐混合烧结得到正极材料(TEM)、X射线光电子能谱(XPS)、能量色散X射线谱(EDS)和恒电流充放电测试等对样品的晶体结构、微观形貌、元素价态以及电化学性能进行表征。研究表明,料液比1∶25、水洗3次、600℃回烧2 h合成的LiNi_(0.88)Co_(0.07)Al_(0.05)O_2具有较优的综合电化学性能,其在0.2C的放电比容量达207.6 mAh·g~(-1),首次充放电效率为84.8%,1C放电比容量为192.0 mAh·g~(-1),循环100周后,材料的放电比容量仍有148.0 mAh·g~(-1),容量保持率达到77.1%。  相似文献   

5.
本文利用共沉淀法制备了富锂材料xLi_2MnO_3·(1-x)LiNi_(0.5)Mn_(0.3)Co_(0.2)O_2(0.3≤x≤0.7),并进行了X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)和恒电流充放电测试。研究了在一定的反应温度下合成出的材料的电化学性能。结果表明,Li_(1.17)Mn_(0.48)Ni_(0.25)Co_(0.1)O_2在0.1 C下的放电比容量为240.3m Ah·g~(-1),其在1 C倍率下100次循环后的比容量为180.6 m Ah·g~(-1),容量保持率为89.4%.  相似文献   

6.
《电化学》2016,(3)
采用共沉淀的方法,以过渡金属硫酸盐为起始物质制备了一系列不同组成的富锂锰基正极材料xLi_2MnO_3·(1-x)LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2(x=0.3,0.5,0.7),通过XRD、Rietveld精修等物理手段比较了不同组成材料的结构特征.通过对比不同比例材料的首周库仑效率、放电可逆容量、循环性能、电压降现象及不同温度下各比例富锂材料的倍率表现等电化学性能,确定0.5Li_2MnO_3·0.5LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2为该系列材料的最优比例.然后采用原位X射线吸收谱技术,对富锂材料在首周活化过程中的机理进行了研究.同步辐射结果表明,在首周充电过程中,镍和钴的价态分别从+2、+3价氧化到+4价,而对于锰来讲,虽然在富锂锰基材料活化的过程中其周围的局域电子结构发生了一定的变化,但是其化合价始终维持在+4价没有发生变化.  相似文献   

7.
LiNi_(0.85)Co_(0.15)O_2合成和结构与电化学性能关系   总被引:4,自引:0,他引:4  
朱先军  詹晖  周运鸿 《化学学报》2002,60(10):1742-1746
介绍了一种以LiOH·H_2O, Co_2O_3和Ni_2O_3为原料通过高温法合成LiNi_(0. 85)Co_(0.15)O_2的方法,通过XRD和电化学测试对制得的产物进行了表征,讨论了 合成条件对产物结构的影响以及结构与电化学性能之间的关系。实验结果表明,合 成反应温度、Li/Ni/Co摩尔比对LiNi_(0.85)Co_(0.15)O_2的结构和电化学性能有 较大的影响,合成出具有电化学活性的LiNi_(0.85)Co_(0.15)O_2需要严格控制反 应条件。本文合成出具有高度结晶层状结构的LiNi_(0.85)Co_(0.15)O_2, Rietveld精化结果表明a = 0.2874 nm, c = 1.4229 nm,最大晶胞体积V = 0. 10180 nm~3,其首次放电容量可达197 mA·h/g, 15次循环后,其放电容量仍在 180 mA·h/g以上。  相似文献   

8.
过渡金属复合物/石墨烯复合材料因其具有优异的电化学性能而被广泛应用在锂离子电池中。本文以硫酸镍、硫酸钴、硫酸铝、草酸为原料按一定的物质的量比配制成溶液,在120℃下水热反应12h,得到多元过渡金属复合草酸盐前驱体Ni_(0.8)Co_(0.15)Al_(0.05)C_2O_4(NCA-C_2O_4);该前驱体经聚烯丙基胺盐酸盐修饰后,与氧化石墨烯进行复合并还原得到石墨烯包覆的多元过渡金属复合草酸盐/石墨烯负极材料Ni_(0.8)Co(_0.15)Al_(0.05)C_2O_4@Graphene(NCA-C_2O_4@G)。对材料的结构、形貌和电化学性质进行了表征。扫描电镜测试结果显示样品粒度均一,具有两端不规则长方体形貌。电化学性能测试结果表明,NCA-C_2O_4@G充放电容量高于前驱体NCA-C_2O_4;0.1C电流密度(1C=1000m Ah/g)下,NCA-C_2O4@G首次放电比容量高达1956m Ah/g;经过0.1、0.2、0.5、1.0、2.0 C高倍率循环后,当测试电流密度恢复至100m A/g时,NCA-C_2O_4@G复合材料比容量可迅速回升至720m Ah/g,并在随后50次循环中比容量保持稳定,显示出良好的循环稳定性和倍率性能。  相似文献   

9.
采用5种方法,即溶胶-凝胶法、高温固相法、共沉淀法、水热法和溶剂热法合成了富锂材料Li_(1.2)Mn_(0.6)Ni_(0.2)O_2。拉曼光谱研究发现共沉淀法制备的样品是固溶体结构,而其他4个样品是以不同尺度共生形成的复合物结构。电化学性能测试结果表明这5个富锂材料性能存在明显差异,尤其是在首次充电过程中5个样品位于4.5 V以上由Li_2MnO_3组分活化所贡献的容量明显不同,共沉淀法制备的具有固溶体结构的样品中由Li_2MnO_3组分活化贡献的容量最多。由此我们建立起电化学性能与两相集成方式的联系,不同的集成方式使得Li_2MnO_3组分活化所贡献的容量不同,进而影响了最终的电化学性能。  相似文献   

10.
采用3种不同pH值的去离子水,NH_4NO_3和H_2C_2O_4溶液对富锂层状正极材料Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2进行表面化学侵蚀改性,旨在改善其整体电化学性能。ICP结果表明pH值对材料中Li的析出具有显著影响。X射线衍射(XRD)表明表面化学侵蚀对材料的结构有影响。拉曼光谱(Raman spectroscopy)表明材料表面结构发生了变化。H_2C_2O_4溶液侵蚀过的样品的首次效率有了极大提高,但同时中值电压和循环性能显著恶化。NH4NO3溶液侵蚀过的样品的首次效率从63%提高到了85%,1C倍率下的放电比容量从149 mAh·g~(-1)提高到194 mAh·g~(-1),同时保持了温和的中值电压变化曲线。通过高分辨透射电镜(HRTEM),X射线光电子能谱(XPS)和电化学阻抗谱(EIS)对改性机理进行了研究。  相似文献   

11.
为提高LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)材料的电化学性能,在NCA材料的制备过程中加入聚乙烯吡咯烷酮(PVP),通过调控所得NCA材料的形貌来提高其电化学性能。所得材料采用X射线衍射仪和扫描电子显微镜进行形貌结构表征,电化学性能经组装成纽扣电池,用电池程控测试仪和电化学工作站进行测试。研究结果表明:由于PVP的空间效应和静电作用,PVP改性的NCA材料拥有更完整的棒状结构、发育出更好的层状结构,电化学储能性能得到较大的提升。在0.1C下,材料的首次放电比容量和充放电效率分别从143.36 mAh·g~(-1)、78.25%提高到了170.24 mAh·g~(-1)、89.20%;在0.2C的实验室条件下循环50次后,容量保持率为94.28%。  相似文献   

12.
在共沉淀过程中添加表面活性剂聚乙二醇(PEG)或聚乙烯吡咯烷酮(PVP)分别合成类球形Ni_(0.80)Co_(0.15)Al_(0.05)(OH)_2前驱体,再与氢氧化锂(LiOH·H_2O)氧化煅烧得到LiNi_(0.80)Co_(0.15)Al_(0.05)O_2(NCA)三元正极材料。利用X射线衍射(XRD)、扫描电镜(SEM)、透射电子显微镜(TEM)、循环伏安(CV)、交流阻抗(EIS)和充放电循环测试等对材料的结构、形貌、电化学性能等进行表征。结果表明:PEG和PVP的添加不影响材料中Ni、Co和Al元素的比例,能够促进一次晶粒长大和提高振实密度,能够促进正极材料层状结构发育进而提高正极材料的电化学性能。添加PEG、添加PVP和未添加表面活性剂合成正极材料的振实密度分别为2.07、1.86和1.40 g·cm~(-3),在0.2C充放电过程中首次放电比容量分别为210.8、188.9和173.0 mAh·g~(-1),以0.2C充电1C放电循环100次后电池容量保持率分别为78.8%、93.2%和82.7%,添加PEG和PVP的NCA材料表现出良好的电化学性能。  相似文献   

13.
以共沉淀法合成的前驱体Ni_(1/3)Co_(2/3-x)Al_x(OH)_2与低共熔锂盐0.38LiOH·H_2O-0.62LiNO_3制备了锂离子电池正极材料LiNi_(1/3)Co_(2/3-x)Al_xO_2(x=1/12,1/3,1/2,7/12).采用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对其结构、形貌和电化学性质进行表征.结果表明,LiNi_(1/3)Co_(2/3-x)Al_xO_2在1/12≤x≤1/3范围内可以保持单一的六方层状a-NaFeO_2结构,当A1掺杂量(x)高于1/3时,会出现杂相.其中,LiNi_(1/3)Co_(1/3)Al_(1/3)O_2结晶程度最高,阳离子混排效应最小,并且颗粒小而均匀,振实密度可以达到2.88 g·cm~(-3),首次放电容量为151.5 mAh·g~(-1),循环50次后放电容量保持在91.4%,在1C和2C倍率下放电容量仍可达到133.7和120.9 mAh·g~(-1)  相似文献   

14.
通过控制结晶法制备高密度类球形Ni_(0.85)Co_(0.06)Mn_(0.06)Al_(0.03)(OH)_2前驱体,与LiOH·H_2O均匀混合后,在820℃于氧气气氛下进行高温煅烧,最终合成高压实富镍正极材料Li Ni_(0.85)Co_(0.06)Mn_(0.06)Al_(0.03)O_2。通过扫描电子显微镜(SEM)表征前驱体、正极材料及正极片的形貌;X射线衍射(XRD)表明材料具有良好的六方单相层状α-NaFeO_2结构,能谱仪(EDS)分析表明材料颗粒中各组分含量呈均匀分布。制备的LiNi_(0.85)Co_(0.06)Mn_(0.06)Al_(0.03)O_2正极材料具有良好的加工性能和很高的压实密度,极片压实密度达到了3.82 g·cm~(-3)。以该极片组装的模拟电池具有良好的电化学性能,尤其具有优异的倍率性能,在电压区间2.8~4.3 V和0.2C电流密度充放电条件下,首次放电比容量为211.7 mAh·g~(-1),首次充放电效率88.9%,5C大倍率充放电条件下容量仍达到180.2 mAh·g~(-1),循环200周容量保持率为80.4%。  相似文献   

15.
采用简单水溶液法制备LiFePO_4包覆的Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2富锂正极材料,包覆后的材料分别经过400°C或500°C煅烧处理5 h。测试结果显示,400°C煅烧处理的包覆样品在0.1C(1C=300 mA?g~(-1))电流密度下充放电时,首次库仑效率可以高达91.9%,同时,首次放电比容量可达到295.0 mAh?g~(-1)。此外,该包覆样品还具有良好的循环性能,在1C电流密度下循环100次放电比容量仍可保持在206.7mAh?g~(-1)。进一步的研究发现LiFePO_4的包覆不仅可以提高Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2富锂材料的首次库仑效率和循环稳定性能,而且还能够有效抑制材料在充放电过程中的电压衰减。上述电化学性能的有效提升主要归因于LiFePO_4包覆层可以阻碍Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2富锂材料与电解液之间的直接接触,减少副反应的发生,增强材料表面的结构稳定性,同时还可以为富锂材料提供额外的可逆容量。  相似文献   

16.
通过共沉淀法制备了球形Li Ni_(0.5)Mn_(1.5)O_4@Li_3PO_4复合材料,并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、循环伏安(CV)、电化学阻抗谱(EIS)及充放电测试研究了其结构与电化学性能。XRD和SEM表明,Li_3PO_4包覆影响了球形Li Ni_(0.5)Mn_(1.5)O_4的晶格常数。CV和EIS表明,质量百分数5%Li_3PO_4包覆的Li Ni_(0.5)Mn_(1.5)O_4具有比纯Li Ni_(0.5)Mn_(1.5)O_4更高的锂离子嵌脱可逆性,更大的锂离子扩散系数和更小的电荷转移电阻,说明在锂离子扩散过程中,质量百分数5%Li_3PO_4包覆的Li Ni_(0.5)Mn_(1.5)O_4具有更高的电子电导率。充放电测试表明,原位Li_3PO_4改性提高了材料的电子电导率、电化学活性,进而提高了高倍率放电容量。质量百分数5%Li_3PO_4包覆的Li Ni_(0.5)Mn_(1.5)O_4提高的电化学性能归因于Li_3PO_4的包覆、纳米颗粒组成球形的粒径引起的高的电子电导率和小的电化学极化。  相似文献   

17.
吴关  周盈科 《无机化学学报》2018,34(7):1333-1340
使用液相包覆工艺对LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)材料进行FePO_4包覆改性,利用FePO_4优异的结构稳定性与热稳定性,对NCA的长期可靠性与安全性能进行改良。重点研究FePO_4包覆对NCA材料的改性效果,以及不同包覆量造成的NCA材料电化学性能差异。表面包覆的FePO_4保护层,能够防止NCA材料与电解液直接接触发生副反应,抑制长期循环过程中过渡金属离子的溶出,保持结构的长期稳定性。当包覆量为1.0%(w/w)时,NCA材料表现出最优的综合性能,充放电循环800次后,容量保持率依然高达95%,25℃下存储100 d后,容量保持率也高于95%,达到了兼顾能量密度、使用寿命及安全性能的理想效果。  相似文献   

18.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li_(1.0)Na_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na_(0.77)Mn O_(2.05)新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 m Ah·g~(-1)和215.8 m Ah·g~(-1),库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 m Ah·g~(-1)和106.2 m Ah·g~(-1)。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li_2Mn O_3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni~(2+)、Co~(3+)、Mn~(4+)所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

19.
以氟化锂为氟源,通过高温固相法合成了F掺杂的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2。采用X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)和电化学测试等手段研究F影响LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2结构和性能的微观机制。结果表明:适量F掺杂可以提高正极材料的放电比容量,改善其倍率性、循环性和热稳定性。当F掺杂量(物质的量分数)为1.5%时,材料的综合电化学性能最优,初始放电比容量(0.2C)和50周循环容量保持率(1C)分别由原始的174.0 mAh·g~(-1)(78.7%)提高到178.6 mAh·g~(-1)(85.7%)。LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料性能的改善可归因于F能够增强过渡金属层、锂层与氧层之间的结合力,提高材料的结构稳定性。此外,F掺杂还有利于降低电化学反应中的界面电阻和电荷转移阻抗。  相似文献   

20.
采用溶胶-凝胶法制备了一系列富锂锰基正极材料xLi2MnO3?(1-x)LiNi0.5Mn0.5O2(x=0.1-0.8),通过X射线衍射(XRD)仪,扫描电子显微镜(SEM)和电化学测试等检测手段表征了所得样品的晶体结构与电化学性能,研究了不同组分下富锂材料的结构与电化学性能.结果表明:Li2MnO3组分含量较高时,材料的首次放电容量较高,但循环稳定性较差;该组分含量较少时,所得样品中出现尖晶石杂相,且放电容量较低,但循环稳定性较好;综合来看,x=0.5时材料的电化学性能最优.x=0.4,0.6时材料也表现出了较好的电化学性能,值得关注.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号