首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用基于密度泛函理论的B3LYP方法和从头算的MP2方法,结合自洽反应场理论的SMD模型,研究了布洛芬(Ibu)分子2种稳定构象的旋光异构反应。研究发现:Ibu的旋光异构有氢氧根拔α-氢和氢氧根水分子簇联合拔α-氢两种机理。势能面计算表明:对于构象1,氢氧根拔α-氢时旋光异构的决速步骤能垒为42.69kJ·mol~(-1),氢氧根水分子簇联合拔α-氢时旋光异构的决速步骤能垒为48.83kJ·mol~(-1);对于构象2,氢氧根拔α-氢时旋光异构的决速步骤能垒为38.73kJ·mol~(-1),氢氧根水分子簇联合拔α-氢时旋光异构的决速步骤能垒为50.72kJ·mol~(-1)。质子的存在会使Ibu旋光异构反应的后半程变成无势垒放热反应。结果表明,水液相碱性环境下布洛芬分子可以较快地旋光异构,质子与氢氧根离子共存会使Ibu旋光异构的反应速度更快。  相似文献   

2.
采用密度泛函理论的M06和MN15方法,结合自洽反应场理论的SMD模型方法,研究了两性及中性α-丙氨酸(α-Ala_1和α-Ala_2)与Co2+配合物在水液相下的旋光异构。α-Ala_1·Co2+可在4个通道(a、b、c和d)实现旋光异构:a通道是质子以羧基底部的氧为桥迁移;b通道是α-氢迁移至羧基底部的氧后,质子在纸面内从氨基向α-碳迁移;c通道是质子以羧基上部的氧为桥迁移;d通道是α-氢迁移至羧基上部的氧后,质子在纸面内从氨基向α-碳迁移。α-Ala_2·Co2+的旋光异构有2个通道(a和b):a通道是其异构成α-Ala_1·Co2+后,再按α-Ala_1·Co2+异构的方式进一步异构;b通道是质子以羰基氧和甲基碳为桥迁移。势能面计算表明:α-Ala_1·Co2+在a和b通道的旋光异构具有优势,隐性溶剂效应下决速步能垒为283.1 kJ/mol,显性溶剂效应下该能垒降至120.3 kJ/mol;α-Ala_2·Co2+在a通道的...  相似文献   

3.
采用密度泛函理论的M06-2X和MN15方法,结合自洽反应场理论的SMD(solvation model based)模型方法,研究了水液相下羟基自由基(OH·)诱导半胱氨酸分子(Cys)损伤的反应机理。研究发现:Cys的损伤可通过OH·抽取其H原子、OH·加成到羧基C和单电子从Cys分子向OH·转移3个通道实现。势能面计算表明:OH·加成到羧基C的反应通道最具优势,是无势垒过程;OH·抽取α-H、质子化氨基H、巯基H和亚甲基H的最低能垒分别是12.5、4.6、7.3、8.9 k J/mol;电子从Cys向OH·转移的反应为劣势通道,能垒为93.5 k J/mol。结果表明,水液相下OH·容易导致Cys分子损伤。  相似文献   

4.
采用密度泛函理论的明尼苏达泛函2006(M06)和明尼苏达泛函2015(MN15)方法,结合自洽场理论的溶质全电子密度溶剂化(solvation model based on desity,SMD)模型,研究了水液相下两性α-丙氨酸二价锰配合物(Mn(Ⅱ))的旋光异构。研究结果表明,S-Ala·Mn2+S-Mn(Ⅱ))可在a、b、c和d 4个通道旋光异构,a通道H以O为桥迁移,b通道H以O和N顺次为桥迁移,c通道H以N为桥迁移,d通道H以Mn(Ⅱ)为桥迁移。势能面计算结果表明,c通道最具优势,决速步能垒为220.8 kJ·mol-1;a和b通道同为亚优势通道,决速步能垒为254.8 kJ·mol-1;d通道为劣势通道,决速步能垒为293.3 kJ·mol-1。在水分子(簇)作用下,c通道决速步能垒降至155.1 kJ·mol-1;a和b通道决速步能垒降至165.8 kJ·mol-1;d通道仍为劣势通道,且S-A·Mn无法在该通道旋光异构。水液相下S-A·Mn很难消旋,Mn(Ⅱ)用于生命体补充二价锰和α-丙氨酸具有较好的安全性。  相似文献   

5.
在SMD/MP2/6-311++G(3df,2pd)//SMD/WB97X-D/6-311++G(d,p)双理论水平,对水液相环境下氢氧根(OH~-)催化苯丙氨酸(phenylalanine,Phe)分子手性对映体转变及质子的作用进行研究。研究发现:水液相环境下OH~-催化Phe手性转变有OH~-抽α-氢和氢氧根水分子簇(OH~-·H_2O)抽α-氢两种情况。氢氧根水分子簇抽氢时有两个通道a和b,a通道是氢氧根水分子簇与Phe的α-氢和氨基氮氢键作用形成的底物异构;b通道是氢氧根水分子簇与Phe的α-氢和羰基氧氢键作用形成的底物异构。a通道又分为两个路径a1和a2,a1是羧基异构后氢氧根水分子簇抽氢;a2是氢氧根水分子簇直接抽氢。当OH~-抽氢时,Phe的手性转变只能通过氢氧根水分子簇抽氢的a通道上两个路径a1和a2实现。势能面计算结果显示:氢氧根(水分子簇)抽α-氢结合Phe碳负离子抽取水分子(簇)中的质子,很容易使Phe实现手性对映体转变,只是OH~-抽α-氢时决速步能垒更低,路径a2更具优势。质子攻击Phe碳负离子是无势垒放热过程。结果表明,水液相环境下OH~-可以催化Phe的手性对映体转变,质子的存在会进一步加速此反应。  相似文献   

6.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的SMD模型方法,研究了水环境下羧基与氨基间为单氢键的α-Ala旋光异构及羟自由基和氢氧根作用的反应。研究发现:α-Ala的旋光异构可在a和b两个通道实现,a通道为羧基顺反异构后,水分子簇作媒介质子以氨基为桥从α碳的一侧向另一侧迁移;b通道为水分子簇作媒介,质子从α碳向氨基氮的迁移与羧基顺反异构协同进行。在a通道,羟自由基水分子簇可致α-Ala损伤。势能面计算表明:水环境下,在a通道3个水分子簇作氢迁移媒介,决速步能垒为113.37 kJ·mol-1,氢氧根水分子簇的催化使该能垒降到64.45 kJ·mol-1;在b通道2个水分子簇作氢迁移媒介,决速步能垒为135.00 kJ·mol-1。羟自由基水分子簇致α-Ala损伤的能垒在水分子抽氢和羟自由基抽氢时分别为24.47和 80.60 kJ·mol-1。  相似文献   

7.
在MP2/ SMD/6-311++g(3df, 2pd)//WB97X-D/SMD/6-311++G(d, p)理论水平上,研究了水液相环境下羟自由基诱导的苯丙氨酸分子的损伤机理。研究发现,羟自由基(水分子簇)抽取α-氢、β-氢、苯环-氢以及羟自由基与苯环加成均可致苯丙氨酸分子损伤。势能面计算表明,羟自由基(水分子簇)抽取α-氢和β-氢的最低能垒分别为68.4和89.3 kJ·mol-1,羟自由基抽取苯环-氢的最低能垒为111.6 kJ·mol-1,羟自由基加成到苯环不同位点碳的能垒大约在106.5~110.2 kJ·mol-1,羟自由基(水分子簇)抽α-氢和β-氢是显著的放热反应。结果表明,羟自由基(水分子簇)抽取α-氢是苯丙氨酸分子损伤的主要途径。  相似文献   

8.
在MP2/ SMD/6-311++g(3df, 2pd)//WB97X-D/SMD/6-311++G(d, p)理论水平上,研究了水液相环境下羟自由基诱导的苯丙氨酸分子的损伤机理。研究发现,羟自由基(水分子簇)抽取α-氢、β-氢、苯环-氢以及羟自由基与苯环加成均可致苯丙氨酸分子损伤。势能面计算表明,羟自由基(水分子簇)抽取α-氢和β-氢的最低能垒分别为68.4和89.3 kJ·mol-1,羟自由基抽取苯环-氢的最低能垒为111.6 kJ·mol-1,羟自由基加成到苯环不同位点碳的能垒大约在106.5~110.2 kJ·mol-1,羟自由基(水分子簇)抽α-氢和β-氢是显著的放热反应。结果表明,羟自由基(水分子簇)抽取α-氢是苯丙氨酸分子损伤的主要途径。  相似文献   

9.
氨基酸及其金属配合物旋光异构的理论研究,对实验上实现它们的手性转变及安全地用于生命体均有重要意义。本文综述了α-丙氨酸(α-Ala)在气相、水汽相、水液相和纳米限域环境下的旋光异构及羟基负离子(水分子簇)的催化作用;α-Ala与生命体必需的主族金属和过渡金属配合物在气相、水汽相和水液相下旋光异构。气相下α-Ala及其绝大多数的金属配合物不能消旋,只有个别的过渡金属配合物能缓慢消旋,纳米限域环境下的α-Ala不能消旋;水汽相下α-Ala及其金属配合物只能痕量或微量地消旋;水液相下α-Ala能少量地消旋,其金属配合物只能痕量、微量或少量地消旋;碱性水环境下α-Ala易消旋。本综述可望为深入研究氨基酸及其金属配合物的旋光异构提供理论参考。  相似文献   

10.
采用密度泛函理论的M06和MN15方法,结合自洽反应场理论的SMD模型方法,研究了水液相下两性α-丙氨酸与二价铁离子配合物(A·Fe)的构型反转.考察了 a、b、c和d共4个反应通道,分别是:α-氢质子以羰基O为桥迁移;α-氢质子迁移到羰基O后,H质子再从氨基N向α-碳迁移;α-氢质子以氨基N为桥迁移;氢负离子以二价铁...  相似文献   

11.
采用密度泛函理论(DFT)的M06和MN15方法,结合极化连续介质的SMD模型方法,研究了水液相下α-丙氨酸(α-Ala)二价镍(α-Ala·Ni2+ )配合物的对映异构化机制。反应通道研究发现:α-Ala·Ni2+ 可以在以羰基O、氨基N和Ni作H质子迁移桥梁的3个通道实现。势能面计算表明:以氨基N作质子迁移桥梁的反应通道最具优势,反应的决速步能垒是92.6 kJ/mol。结果表明:水液相下α-Ala·Ni2+ 会缓慢地消旋,因此只能短期且少量地用于生命体同补α-丙氨酸和二价镍。  相似文献   

12.
采用密度泛函理论M06-2X和MN15方法,结合自洽反应场理论的SMD模型方法,研究了水液相下羟基负离子(OH-)催化半胱氨酸(Cys)分子的旋光异构反应机理。研究发现,两性Cys分子的消旋反应可以通过OH-直接抽取α-H质子和Cys碳负离子抽取水分子(H2O)质子实现,也可以在两性Cys向中性异构后,通过OH-抽取中性Cys的α-H质子和Cys碳负离子抽取H2O质子实现。势能面计算表明:第1种情况下Cys消旋反应的活化能垒是45.8 k J/mol,第2种情况下Cys消旋反应的活化能垒是51.6 k J/mol,均比水液相下Cys消旋反应的活化能垒104.0 k J/mol低很多。结果表明,水液相下OH-对Cys的旋光异构具有很好的催化作用。  相似文献   

13.
采用基于密度泛函理论(DFT)的M06-2X和MN15方法结合自洽反应场理论的SMD模型方法,研究了水液相环境两性S-型脯氨酸(S-Pro)与Ca~(2+)配合物(S-Pro·Ca~(2+))的旋光异构。考察了S-Pro·Ca~(2+)在3个反应通道a、b和c的旋光异构过程:a通道是以羰基氧为质子迁移媒介;b通道是α-C上的质子先迁移至羰基氧,然后氨基氮上的质子在纸面内向α-C迁移;c通道是以羰基氧和氨基氮为质子迁移媒介。势能面研究表明:隐性溶剂效应下c通道明显具有优势,决速步能垒为221.4 k J/mol;显性溶剂效应下c通道略具优势,决速步能垒降到131.2 k J/mol。结果表明,脯氨酸钙在水液相环境只能很少量地消旋,其用于生命体同补脯氨酸和钙离子具有较好的安全性。  相似文献   

14.
在MP2/SMD/6-311++G(3df,2pd)//ωB97X-D/SMD/6-311++G(d,p)双理论水平,研究了水液相环境下半胱氨酸(Cys)分子以氨基氮为质子转移桥梁的手性对映体转变及水分子簇的催化作用。反应历程研究发现,半胱氨酸分子经过6个基元反应实现了手性对映体转变。反应历程的势能面计算显示:半胱氨酸分子手性对映体转变反应的速控步骤是第2基元反应,速控步骤的内禀能垒为242. 7 kJ·mol-1;2个水分子簇的催化使速控步骤的内禀能垒降至104. 0 kJ·mol-1。结果表明,水环境下半胱氨酸分子可以实现手性对映体转变。  相似文献   

15.
基于密度泛函理论,对孤立条件下的α-丙氨酸分子手性转变过程和水分子对此过程中氢转移的催化作用进行了研究.通过寻找过渡态和中间体等极值点的结构,绘制了孤立条件下α-丙氨酸分子手性转变的过程以及水环境中重要氢转移过程的势能面.结果表明,孤立条件下α-丙氨酸分子手性转变有2条路径:路径1由3个中间体和4个过渡态组成,最高能垒337.4kJ·mol-1来自羧基的氢向甲基迁移和甲基的氢向手性碳迁移的协同过程.路径2由4个中间体和5个过渡态组成,最高能垒316.3kJ·mol-l来自手性碳上的氢向羧基上氧的转移.单个水分子和2个水分子作为氢转移的桥梁,使路径2的最高能垒从316.3kJ·mol-1分别降到198.0和167.8kJ·mol-1.  相似文献   

16.
采用基于密度泛函理论的?B97X-D和M06方法,研究了气相环境下Cu~(2+)催化α-丙氨酸(α-Ala)分子两种稳定构型的手性对映体转变。对于构型1的手性转变反应考察了4个通道(ai,aj,ak和b),ai、aj和ak通道分别是羟基旋转后α-H以氨基氮、铜及与铜配位的羰基氧为桥迁移;b通道是羟基氢向氨基氮迁移后α-H向羰基氧迁移,接着质子从质子化氨基向α-C迁移。对于构型2的手性转变反应考察了α-H以氨基氮为桥迁移的通道。势能面计算表明:对于构型1,aj通道具有优势,决速步骤的内禀能垒为120. 3 kJ·mol~(-1),构型2在决速步骤的内禀能垒为189. 0 kJ·mol~(-1)。结果表明:相对于孤立环境下α-Ala分子的手性转变,气相环境下Cu~(2+)对α-Ala分子的手性转变反应具有较好的催化作用。  相似文献   

17.
采用组合的量子化学ONIOM(B3LYP/6-31++G(d,p):UFF)方法,研究了限域在SWCNT(9,9)内α-丙氨酸的分子结构和手性转变机制.为得到相对高水平的体系能量和反应势能面,在ONIOM(B3LYP/6-311++G(3df,3pd):UFF)水平上计算了各个包结物的单点能.分子结构分析表明:与单体α-丙氨酸相比,受限在SWCNT(9,9)碳纳米管内时,键长均略缩短,骨架原子的二面角基本不变.反应路径研究发现,α-丙氨酸分子在SWCNT(9,9)内的手性转变路径有2条与单体情况大致相同.不存在单体情况的有羰基H和甲基H协同转移过程的反应通道.对手性转变反应过程势能面的计算发现,S型α-丙氨酸在SWCNT(9,9)内向R型转变与单体α-丙氨酸手性转变反应过程的主要能垒相比较,路径1的最高能垒同样是由在纸外面的氢从手性碳直接到羰基氧的过渡态产生的,能垒基本不变;路径2是氢先在羧基内转移,此过程的能垒由194.5降到137.6kJ·mol-1.而后纸外面的氢从手性碳转移到羰基,此过程的能垒由317.1降到302.9kJ·mol-1.研究结果表明,SWCNT(9,9)对α-丙氨酸的限域影响使手性转变反应过程的某些能垒降低,改变或部分改变了反应路径.  相似文献   

18.
本文采用多种光谱学方法结合计算机模拟手段,通过研究牡荆素对α-淀粉酶的抑制作用、相互作用的结合特性和空间结合构象及其诱导酶分子结构的变化对酶催化底物的影响,进而阐释牡荆素抑制α-淀粉酶的分子机制。结果表明,牡荆素以可逆性竞争的方式抑制α-淀粉酶的活性,其半抑制浓度(IC50值)为2.25×10-3 mol·L-1,抑制常数为(2.28±0.13)×10-3mol·L-1。牡荆素也能够与淀粉结合来减少淀粉的消化分解为葡萄糖。牡荆素通过单一静态方式猝灭α-淀粉酶的内源荧光,其中荧光基团Trp残基的贡献大于Tyr残基。牡荆素结合在α-淀粉酶的一个位点处,结合常数Ka为103数量级,主要依靠疏水力驱动,两者结合作用使α-淀粉酶的α-螺旋含量降低,β-折叠和β-转角含量增加,表面疏水性减小,酶结构趋于松散。分子模拟显示,牡荆素能够对接于α-淀粉酶的活性空腔,并与周围的氨基酸残基Asp197、Glu233、Ile235、His299、Asp300与His305等发生相互作用。推测牡荆素通过与α-淀粉酶结合,改变了酶分子的构象,并且与底物竞争α-淀粉酶的活性位点,而阻碍了底物被酶分解,进而抑制了α-淀粉酶的活性。  相似文献   

19.
采用基于密度泛函理论的M06方法,研究了气相环境下2种稳定构型的丙氨酸(Ala)与Ca2+配合物的手性转变及水分子的催化。研究发现,Ala_1·Ca2+的手性转变有a和b 2个通道,a通道是α-氢只以羰基氧为桥迁移;b通道是α-氢迁移到羰基氧后,氨基上的质子在纸面内侧向α-碳迁移。Ala_2·Ca2+的手性转变有a、b、c、d 4个通道,a和b通道分别是羧基内质子迁移后,α-氢只以羰基氧为桥迁移和α-氢迁移到羰基氧接质子从氨基氮向α-碳迁移;c通道是钙与氮的配位键断裂后,α-氢向氨基氮迁移;d通道是钙与氮的配位键断裂后,Ala_2·Ca2+向Ala_1·Ca2+异构,再接Ala_1·Ca2+的手性转变。势能面计算表明,Ala_1·Ca2+手性转变的a通道具有优势,总包能垒为134.8 kJ·mol-1,Ala_2·Ca2+手性转变的d通道具有优势,总包能垒为235.3 kJ·mol-1;水分子的催化使能垒分别降至40.8和141.3 kJ·mol-1。结果表明,Ca2+对Ala的手性转变具有催化作用,水分子对丙氨酸Ca2+配合物的手性转变具有极好的催化作用。  相似文献   

20.
采用基于密度泛函理论的M06方法,研究了气相环境下2种稳定构型的丙氨酸(Ala)与Ca2+配合物的手性转变及水分子的催化。研究发现,Ala_1·Ca2+的手性转变有a和b 2个通道,a通道是α-氢只以羰基氧为桥迁移;b通道是α-氢迁移到羰基氧后,氨基上的质子在纸面内侧向α-碳迁移。Ala_2·Ca2+的手性转变有a、b、c、d 4个通道,a和b通道分别是羧基内质子迁移后,α-氢只以羰基氧为桥迁移和α-氢迁移到羰基氧接质子从氨基氮向α-碳迁移;c通道是钙与氮的配位键断裂后,α-氢向氨基氮迁移;d通道是钙与氮的配位键断裂后,Ala_2·Ca2+向Ala_1·Ca2+异构,再接Ala_1·Ca2+的手性转变。势能面计算表明,Ala_1·Ca2+手性转变的a通道具有优势,总包能垒为134.8 kJ·mol-1,Ala_2·Ca2+手性转变的d通道具有优势,总包能垒为235.3 kJ·mol-1;水分子的催化使能垒分别降至40.8和141.3 kJ·mol-1。结果表明,Ca2+对Ala的手性转变具有催化作用,水分子对丙氨酸Ca2+配合物的手性转变具有极好的催化作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号