首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用基于密度泛函理论的B3LYP方法和从头算的MP2方法,结合自洽反应场理论的SMD模型,研究了布洛芬(Ibu)分子2种稳定构象的旋光异构反应。研究发现:Ibu的旋光异构有氢氧根拔α-氢和氢氧根水分子簇联合拔α-氢两种机理。势能面计算表明:对于构象1,氢氧根拔α-氢时旋光异构的决速步骤能垒为42.69kJ·mol~(-1),氢氧根水分子簇联合拔α-氢时旋光异构的决速步骤能垒为48.83kJ·mol~(-1);对于构象2,氢氧根拔α-氢时旋光异构的决速步骤能垒为38.73kJ·mol~(-1),氢氧根水分子簇联合拔α-氢时旋光异构的决速步骤能垒为50.72kJ·mol~(-1)。质子的存在会使Ibu旋光异构反应的后半程变成无势垒放热反应。结果表明,水液相碱性环境下布洛芬分子可以较快地旋光异构,质子与氢氧根离子共存会使Ibu旋光异构的反应速度更快。  相似文献   

2.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的SMD模型方法,研究了水环境下羧基与氨基间为单氢键的α-Ala旋光异构及羟自由基和氢氧根作用的反应。研究发现:α-Ala的旋光异构可在a和b两个通道实现,a通道为羧基顺反异构后,水分子簇作媒介质子以氨基为桥从α碳的一侧向另一侧迁移;b通道为水分子簇作媒介,质子从α碳向氨基氮的迁移与羧基顺反异构协同进行。在a通道,羟自由基水分子簇可致α-Ala损伤。势能面计算表明:水环境下,在a通道3个水分子簇作氢迁移媒介,决速步能垒为113.37 kJ·mol-1,氢氧根水分子簇的催化使该能垒降到64.45 kJ·mol-1;在b通道2个水分子簇作氢迁移媒介,决速步能垒为135.00 kJ·mol-1。羟自由基水分子簇致α-Ala损伤的能垒在水分子抽氢和羟自由基抽氢时分别为24.47和 80.60 kJ·mol-1。  相似文献   

3.
采用色散校正密度泛函理论的WB97X-D方法和多体微扰理论的MP2方法研究了2种稳定构象的半胱氨酸分子手性对映体转变及水分子簇的催化。反应通道研究发现:半胱氨酸分子的手性对映体转变可以在3个通道a、b和c实现,a和b通道分别是羧基异构和α-氢向氨基氮迁移分步进行和协同进行,c通道是α-氢向羰基氧迁移后羧基氢再向氨基氮迁移。根据R-基异构和α-氢迁移的顺序不同,每个通道又可分为几条路径。势能面计算表明:a是优势反应通道,构象1在a通道的2条路径上的反应活化能分别为264. 7,268. 1 kJ·mol~(-1),构象2在a通道上的反应活化能为267. 6 kJ·mol~(-1);2个水分子簇的催化使构象1和2在a通道的反应活化能分别降至95. 3,72. 4 kJ·mol~(-1)。结果表明:水分子簇的催化可使半胱氨酸分子实现手性对映体转变。  相似文献   

4.
在SMD/MP2/6-311++G(3df,2pd)//SMD/WB97X-D/6-311++G(d,p)双理论水平,对水液相环境下氢氧根(OH~-)催化苯丙氨酸(phenylalanine,Phe)分子手性对映体转变及质子的作用进行研究。研究发现:水液相环境下OH~-催化Phe手性转变有OH~-抽α-氢和氢氧根水分子簇(OH~-·H_2O)抽α-氢两种情况。氢氧根水分子簇抽氢时有两个通道a和b,a通道是氢氧根水分子簇与Phe的α-氢和氨基氮氢键作用形成的底物异构;b通道是氢氧根水分子簇与Phe的α-氢和羰基氧氢键作用形成的底物异构。a通道又分为两个路径a1和a2,a1是羧基异构后氢氧根水分子簇抽氢;a2是氢氧根水分子簇直接抽氢。当OH~-抽氢时,Phe的手性转变只能通过氢氧根水分子簇抽氢的a通道上两个路径a1和a2实现。势能面计算结果显示:氢氧根(水分子簇)抽α-氢结合Phe碳负离子抽取水分子(簇)中的质子,很容易使Phe实现手性对映体转变,只是OH~-抽α-氢时决速步能垒更低,路径a2更具优势。质子攻击Phe碳负离子是无势垒放热过程。结果表明,水液相环境下OH~-可以催化Phe的手性对映体转变,质子的存在会进一步加速此反应。  相似文献   

5.
采用密度泛函理论的M06和MN15方法,结合自洽反应场理论的SMD模型方法,研究了两性及中性α-丙氨酸(α-Ala_1和α-Ala_2)与Co2+配合物在水液相下的旋光异构。α-Ala_1·Co2+可在4个通道(a、b、c和d)实现旋光异构:a通道是质子以羧基底部的氧为桥迁移;b通道是α-氢迁移至羧基底部的氧后,质子在纸面内从氨基向α-碳迁移;c通道是质子以羧基上部的氧为桥迁移;d通道是α-氢迁移至羧基上部的氧后,质子在纸面内从氨基向α-碳迁移。α-Ala_2·Co2+的旋光异构有2个通道(a和b):a通道是其异构成α-Ala_1·Co2+后,再按α-Ala_1·Co2+异构的方式进一步异构;b通道是质子以羰基氧和甲基碳为桥迁移。势能面计算表明:α-Ala_1·Co2+在a和b通道的旋光异构具有优势,隐性溶剂效应下决速步能垒为283.1 kJ/mol,显性溶剂效应下该能垒降至120.3 kJ/mol;α-Ala_2·Co2+在a通道的...  相似文献   

6.
在MP2/ SMD/6-311++g(3df, 2pd)//WB97X-D/SMD/6-311++G(d, p)理论水平上,研究了水液相环境下羟自由基诱导的苯丙氨酸分子的损伤机理。研究发现,羟自由基(水分子簇)抽取α-氢、β-氢、苯环-氢以及羟自由基与苯环加成均可致苯丙氨酸分子损伤。势能面计算表明,羟自由基(水分子簇)抽取α-氢和β-氢的最低能垒分别为68.4和89.3 kJ·mol-1,羟自由基抽取苯环-氢的最低能垒为111.6 kJ·mol-1,羟自由基加成到苯环不同位点碳的能垒大约在106.5~110.2 kJ·mol-1,羟自由基(水分子簇)抽α-氢和β-氢是显著的放热反应。结果表明,羟自由基(水分子簇)抽取α-氢是苯丙氨酸分子损伤的主要途径。  相似文献   

7.
在MP2/ SMD/6-311++g(3df, 2pd)//WB97X-D/SMD/6-311++G(d, p)理论水平上,研究了水液相环境下羟自由基诱导的苯丙氨酸分子的损伤机理。研究发现,羟自由基(水分子簇)抽取α-氢、β-氢、苯环-氢以及羟自由基与苯环加成均可致苯丙氨酸分子损伤。势能面计算表明,羟自由基(水分子簇)抽取α-氢和β-氢的最低能垒分别为68.4和89.3 kJ·mol-1,羟自由基抽取苯环-氢的最低能垒为111.6 kJ·mol-1,羟自由基加成到苯环不同位点碳的能垒大约在106.5~110.2 kJ·mol-1,羟自由基(水分子簇)抽α-氢和β-氢是显著的放热反应。结果表明,羟自由基(水分子簇)抽取α-氢是苯丙氨酸分子损伤的主要途径。  相似文献   

8.
采用基于密度泛函理论的?B97X-D和M06方法,研究了气相环境下Cu~(2+)催化α-丙氨酸(α-Ala)分子两种稳定构型的手性对映体转变。对于构型1的手性转变反应考察了4个通道(ai,aj,ak和b),ai、aj和ak通道分别是羟基旋转后α-H以氨基氮、铜及与铜配位的羰基氧为桥迁移;b通道是羟基氢向氨基氮迁移后α-H向羰基氧迁移,接着质子从质子化氨基向α-C迁移。对于构型2的手性转变反应考察了α-H以氨基氮为桥迁移的通道。势能面计算表明:对于构型1,aj通道具有优势,决速步骤的内禀能垒为120. 3 kJ·mol~(-1),构型2在决速步骤的内禀能垒为189. 0 kJ·mol~(-1)。结果表明:相对于孤立环境下α-Ala分子的手性转变,气相环境下Cu~(2+)对α-Ala分子的手性转变反应具有较好的催化作用。  相似文献   

9.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了脯氨酸手性转变裸反应机理、水分子的催化作用及水溶剂化效应.结构分析表明:三元环结构过渡态aTS2、五元环结构过渡态aTS2·1H_2O和七元环结构过渡态aTS2·2H_2O的稳定性顺次增加.反应通道研究发现:标题反应有4个通道a,b,c,d.a,b和c通道手性碳上的质子分别以亚氨基为桥、依次以羰基和亚氨基为桥和只以羰基为桥迁移;d通道羧基内质子迁移后,手性碳上的质子再以羰基为桥迁移.势能面计算表明:a通道为优势反应通道,单体气相反应决速步骤吉布斯自由能垒为246.0kJ·mol~(-1);2个水分子的催化使决速步骤自由能垒降为122.6kJ·mol~(-1);2个水分子的催化与水溶剂效应的共同作用,使决速步骤自由能垒降为105.1kJ·mol~(-1).  相似文献   

10.
采用密度泛函理论的M06-2X和MN15方法,在6-31++G(d,p)和6-311++G(2df,pd)基组水平下,研究了气相S-型两性脯氨酸(S-Pro_1)和中性脯氨酸(S-Pro_2)与Ca~(2+)配合物的旋光异构及水分子(簇)的催化作用。反应通道研究发现:S-Pro_1·Ca~(2+)的旋光异构有2个通道a和b,a通道是α-氢以氧为桥迁移,b通道是α-氢从α-碳迁移至氧后,再从氮向α-碳迁移;S-Pro_2·Ca~(2+)的旋光异构也有2个通道a和b,a通道是螯合环打开后向S-Pro_1·Ca~(2+)异构,b通道是羧基内质子迁移后,α-氢再以羰基氧为桥迁移,向R-Pro_2·Ca~(2+)异构。势能面计算表明:S-Pro_1·Ca~(2+)旋光异构的a通道最具优势,反应活化能为279.4 k J/mol,水分子(簇)的催化作用使反应活化能降至149.1 k J/mol;S-Pro_2·Ca~(2+)旋光异构的a通道也最具优势,反应活化能为217.5 k J/mol。结果表明,气相脯氨酸钙配合物很难发生旋光异构,水分子存在时脯氨酸钙能痕量地消旋。  相似文献   

11.
采用量子力学与分子力学组合的ONIOM方法,研究了扶手椅型单壁碳纳米管(SWCNT)孔径对缬氨酸(valine,Val)分子两种构象Val_1和Val_2旋光异构的限域影响。结构分析表明:扶手椅型SWCNT(5,5)的限域作用致Val分子骨架明显形变,同时SWCNT(5,5)也发生了明显形变。势能面研究表明:限域在SWCNT内的Val分子以氨基氮为质子转移桥梁的旋光异构反应通道具有优势;Val_1和Val_2限域在SWCNT(5,5)内,在优势通道上旋光异构决速步骤的内禀能垒分别为340.55和361.13kJ·mol~(-1),限域在SWCNT(6,6)内,在优势通道上旋光异构决速步骤的内禀能垒分别为302.80和293.11kJ·mol~(-1),限域在SWCNT(7,7)内,在优势通道上旋光异构决速步骤的内禀能垒为265.54kJ·mol~(-1)左右。计算结果表明:SWCNT(5,5)的限域作用及其固体溶剂效应对Val分子的旋光异构反应具有显著的阻碍作用,SWCNT(5,5)可以安全地储存光学纯Val。  相似文献   

12.
采用密度泛函理论的明尼苏达泛函2006(M06)和明尼苏达泛函2015(MN15)方法,结合自洽场理论的溶质全电子密度溶剂化(solvation model based on desity,SMD)模型,研究了水液相下两性α-丙氨酸二价锰配合物(Mn(Ⅱ))的旋光异构。研究结果表明,S-Ala·Mn2+S-Mn(Ⅱ))可在a、b、c和d 4个通道旋光异构,a通道H以O为桥迁移,b通道H以O和N顺次为桥迁移,c通道H以N为桥迁移,d通道H以Mn(Ⅱ)为桥迁移。势能面计算结果表明,c通道最具优势,决速步能垒为220.8 kJ·mol-1;a和b通道同为亚优势通道,决速步能垒为254.8 kJ·mol-1;d通道为劣势通道,决速步能垒为293.3 kJ·mol-1。在水分子(簇)作用下,c通道决速步能垒降至155.1 kJ·mol-1;a和b通道决速步能垒降至165.8 kJ·mol-1;d通道仍为劣势通道,且S-A·Mn无法在该通道旋光异构。水液相下S-A·Mn很难消旋,Mn(Ⅱ)用于生命体补充二价锰和α-丙氨酸具有较好的安全性。  相似文献   

13.
氨基酸及其金属配合物旋光异构的理论研究,对实验上实现它们的手性转变及安全地用于生命体均有重要意义。本文综述了α-丙氨酸(α-Ala)在气相、水汽相、水液相和纳米限域环境下的旋光异构及羟基负离子(水分子簇)的催化作用;α-Ala与生命体必需的主族金属和过渡金属配合物在气相、水汽相和水液相下旋光异构。气相下α-Ala及其绝大多数的金属配合物不能消旋,只有个别的过渡金属配合物能缓慢消旋,纳米限域环境下的α-Ala不能消旋;水汽相下α-Ala及其金属配合物只能痕量或微量地消旋;水液相下α-Ala能少量地消旋,其金属配合物只能痕量、微量或少量地消旋;碱性水环境下α-Ala易消旋。本综述可望为深入研究氨基酸及其金属配合物的旋光异构提供理论参考。  相似文献   

14.
采用密度泛函理论M06-2X和MN15方法,结合自洽反应场理论的SMD模型方法,研究了水液相下羟基负离子(OH-)催化半胱氨酸(Cys)分子的旋光异构反应机理。研究发现,两性Cys分子的消旋反应可以通过OH-直接抽取α-H质子和Cys碳负离子抽取水分子(H2O)质子实现,也可以在两性Cys向中性异构后,通过OH-抽取中性Cys的α-H质子和Cys碳负离子抽取H2O质子实现。势能面计算表明:第1种情况下Cys消旋反应的活化能垒是45.8 k J/mol,第2种情况下Cys消旋反应的活化能垒是51.6 k J/mol,均比水液相下Cys消旋反应的活化能垒104.0 k J/mol低很多。结果表明,水液相下OH-对Cys的旋光异构具有很好的催化作用。  相似文献   

15.
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法研究了单体半胱氨酸分子手性转变机理及水分子对氢迁移反应的催化作用.根据研究结果,半胱氨酸分子手性转变反应有4个通道:a通道是手性C上的H只以氨基N为桥转移至手性C另一侧;b通道是手性C上的H依次以羰基O和氨基N为桥转移至手性碳另一侧;c通道是手性C上的H只以羰基O为桥转移至手性碳另一侧;d通道是手性C上的H以羟基O为桥转移至手性碳另一侧.势能面计算表明:a通道为优势反应通道,最高能垒254.6kJ·mol~(-1);1个水分子及2个水分子构成的链作为H迁移媒介,使最高能垒降至163.2和126.2kJ·mol~(-1),说明水分子对H迁移反应具有较好的催化作用.  相似文献   

16.
采用密度泛函理论(DFT)的M06和MN15方法,结合极化连续介质的SMD模型方法,研究了水液相下α-丙氨酸(α-Ala)二价镍(α-Ala·Ni2+ )配合物的对映异构化机制。反应通道研究发现:α-Ala·Ni2+ 可以在以羰基O、氨基N和Ni作H质子迁移桥梁的3个通道实现。势能面计算表明:以氨基N作质子迁移桥梁的反应通道最具优势,反应的决速步能垒是92.6 kJ/mol。结果表明:水液相下α-Ala·Ni2+ 会缓慢地消旋,因此只能短期且少量地用于生命体同补α-丙氨酸和二价镍。  相似文献   

17.
采用基于密度泛函理论的M06方法,研究了气相环境下2种稳定构型的丙氨酸(Ala)与Ca2+配合物的手性转变及水分子的催化。研究发现,Ala_1·Ca2+的手性转变有a和b 2个通道,a通道是α-氢只以羰基氧为桥迁移;b通道是α-氢迁移到羰基氧后,氨基上的质子在纸面内侧向α-碳迁移。Ala_2·Ca2+的手性转变有a、b、c、d 4个通道,a和b通道分别是羧基内质子迁移后,α-氢只以羰基氧为桥迁移和α-氢迁移到羰基氧接质子从氨基氮向α-碳迁移;c通道是钙与氮的配位键断裂后,α-氢向氨基氮迁移;d通道是钙与氮的配位键断裂后,Ala_2·Ca2+向Ala_1·Ca2+异构,再接Ala_1·Ca2+的手性转变。势能面计算表明,Ala_1·Ca2+手性转变的a通道具有优势,总包能垒为134.8 kJ·mol-1,Ala_2·Ca2+手性转变的d通道具有优势,总包能垒为235.3 kJ·mol-1;水分子的催化使能垒分别降至40.8和141.3 kJ·mol-1。结果表明,Ca2+对Ala的手性转变具有催化作用,水分子对丙氨酸Ca2+配合物的手性转变具有极好的催化作用。  相似文献   

18.
采用基于密度泛函理论的M06方法,研究了气相环境下2种稳定构型的丙氨酸(Ala)与Ca2+配合物的手性转变及水分子的催化。研究发现,Ala_1·Ca2+的手性转变有a和b 2个通道,a通道是α-氢只以羰基氧为桥迁移;b通道是α-氢迁移到羰基氧后,氨基上的质子在纸面内侧向α-碳迁移。Ala_2·Ca2+的手性转变有a、b、c、d 4个通道,a和b通道分别是羧基内质子迁移后,α-氢只以羰基氧为桥迁移和α-氢迁移到羰基氧接质子从氨基氮向α-碳迁移;c通道是钙与氮的配位键断裂后,α-氢向氨基氮迁移;d通道是钙与氮的配位键断裂后,Ala_2·Ca2+向Ala_1·Ca2+异构,再接Ala_1·Ca2+的手性转变。势能面计算表明,Ala_1·Ca2+手性转变的a通道具有优势,总包能垒为134.8 kJ·mol-1,Ala_2·Ca2+手性转变的d通道具有优势,总包能垒为235.3 kJ·mol-1;水分子的催化使能垒分别降至40.8和141.3 kJ·mol-1。结果表明,Ca2+对Ala的手性转变具有催化作用,水分子对丙氨酸Ca2+配合物的手性转变具有极好的催化作用。  相似文献   

19.
基于密度泛函理论,对孤立条件下的α-丙氨酸分子手性转变过程和水分子对此过程中氢转移的催化作用进行了研究.通过寻找过渡态和中间体等极值点的结构,绘制了孤立条件下α-丙氨酸分子手性转变的过程以及水环境中重要氢转移过程的势能面.结果表明,孤立条件下α-丙氨酸分子手性转变有2条路径:路径1由3个中间体和4个过渡态组成,最高能垒337.4kJ·mol-1来自羧基的氢向甲基迁移和甲基的氢向手性碳迁移的协同过程.路径2由4个中间体和5个过渡态组成,最高能垒316.3kJ·mol-l来自手性碳上的氢向羧基上氧的转移.单个水分子和2个水分子作为氢转移的桥梁,使路径2的最高能垒从316.3kJ·mol-1分别降到198.0和167.8kJ·mol-1.  相似文献   

20.
采用基于密度泛函理论(DFT)的M06-2X和MN15方法结合自洽反应场理论的SMD模型方法,研究了水液相环境两性S-型脯氨酸(S-Pro)与Ca~(2+)配合物(S-Pro·Ca~(2+))的旋光异构。考察了S-Pro·Ca~(2+)在3个反应通道a、b和c的旋光异构过程:a通道是以羰基氧为质子迁移媒介;b通道是α-C上的质子先迁移至羰基氧,然后氨基氮上的质子在纸面内向α-C迁移;c通道是以羰基氧和氨基氮为质子迁移媒介。势能面研究表明:隐性溶剂效应下c通道明显具有优势,决速步能垒为221.4 k J/mol;显性溶剂效应下c通道略具优势,决速步能垒降到131.2 k J/mol。结果表明,脯氨酸钙在水液相环境只能很少量地消旋,其用于生命体同补脯氨酸和钙离子具有较好的安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号