首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physica B: Condensed Matter》2000,275(1-3):120-123
We investigate the magnetization reversal process in two-phase hard/soft (h/s) magnetic multilayers with exchange-spring behavior using a mean-field approach to determine the equilibrium configuration. Starting from a trilayer made of 50h/100s/50h layers, we separately consider the effect of increasing nanostructuration (while maintaining constant the overall h/s ratio) and decreasing the thickness of the hard phase (while keeping constant that of the soft phase) on the maximum energy product (BH)max. In this way, the optimal composition for the multilayer exchange-spring magnet can be determined.  相似文献   

2.
" 通过快速冷凝的方法制备了高性能、强织构纳米复合Nd3:8Dy0:7Pr3:5Fe86Nb1B5永磁材料.X射线衍射和磁测量分析显示薄带有优先取向的特征.随着快淬速度的提高,易磁化方向由垂直与薄带面的方向转向平行于薄带面的方向.通过SPM分析了样品中磁畴结构的形成以及对交换耦合作用强弱的影响.同时,Henkel曲线也表明了在快淬速度为30 m/s下制备的薄带晶粒有较强的交换耦合作用,从而使其剩磁提高,磁性能增强.在快淬速度为30 m/s下制备的样品平均晶粒尺寸为16 nm,样品含有高织构的硬磁相(Nd,  相似文献   

3.
A fully automatic system has been designed for the accurate measurement of the DC magnetic properties of soft and hard ferromagnetic materials utilising discrete calibrated instruments in order to provide a traceable calibration route separate from the transfer of standard magnetic test samples. Custom written software is used to operate the system in one of three modes, constant dH/dt, variable dH/dt and a second quadrant demagnetisation curve mode. The first two of these modes are utilised for soft magnetic materials with the second mode varying dH/dt in order to keep dB/dt relatively constant. Both modes use cycle times of between 60 and 300 s and may utilise a variety of test configurations including a bar permeameter, electromagnet, ring samples or Epstein frame. The minimum cycle time and the most appropriate mode is dependent on the particular sample and the effect of this on materials with a large dB/dH is significant. Measurements on soft materials include major BH loop, minor BH loops, first-order reversal curves, remanence, coercivity, normal magnetisation curve, peak permeability and loop area. The third mode is used with an electromagnet to measure the demagnetisation curve of hard magnetic materials up to a maximum demagnetisation field of 1.6 MA/m. The measurement algorithm modulates dH/dt depending on dB/dt and incorporates holdback in order to accommodate rare earth materials which exhibit high viscosity.  相似文献   

4.
Hysteresis loops and magnetic reversal processes have been determined by a three dimensional (3D) micromagnetic model for exchange-coupled Nd2Fe14B/α-Fe bilayers and carefully compared with a popular one-dimensional (1D) micromagnetic model. It is found that the calculated hysteresis loops, the critical fields and the magnetic phase diagrams agree well with the results given by the 1D model. However, the calculated nucleation mode is a quasi-curling one where the magnetic moment exhibits a curling in the film plane and varies in the thickness direction, in contrast with the reported quasi-coherent mode. The calculated spatial distribution of the magnetization orientation in the thickness direction at various applied fields signifies a three-step magnetic reversal process, which includes nucleation, growth and displacement of the domain wall as well as the rotation and the reversal of magnetization in the hard phase. The magnetic reversal of the hard phase is much slower than that given by the 1D model, leading to a more slant hysteresis loop near the coercivity point.  相似文献   

5.
A hard/soft SmCo5/Fe nanocomposite magnetic bilayer system is fabricated on x-ray transparent 100-200 nm thin Si3N4 films by magnetron sputtering.The microscopic magnetic domain pattern and its behaviours during magnetization reversal in the hard and the soft magnetic phases are studied separately by element specific magnetic soft x-ray microscopy at a spatial resolution of better than 25 nm.We observe that the domain patterns for the soft and hard phases show coherent behaviours in varying magnetic fields.We derive local M(H) curves from the images of Fe and SmCo5 separately and find the switches for hard and soft phases to be the same.  相似文献   

6.
CoPt-based hard–soft sputtered bilayers with (1 1 1) texture have been produced by appropriate heat treatment of the bottom layer. Two samples with different degrees of chemical ordering of the hard layer are compared. The anisotropy of the hard layer determines its robustness against destabilization from the soft one. Detailed measurements of the soft layer minor hysteresis loop features as a function of the magnetic state of the hard layer are proposed as a means to study the nature of interfacial exchange interactions and the mechanism of magnetization reversal. When hard layer anisotropy is not robust enough, the reversed soft layer can induce irreversible changes to the magnetic structure at the interface leading to a decoupling of exchange field from the magnetic state of the hard layer.  相似文献   

7.
Magnetization reversal in the model of a hard/soft magnetic bilayer under the action of an external magnetic field has been investigated by the Monte Carlo method. Calculations have been performed for three systems: (i) the model without a soft-magnetic layer (hard-magnetic layer), (ii) the model with a soft-magnetic layer of thickness 25 atomic layers (predominantly exchange-coupled system), and (iii) with 50 (weak exchange coupling) atomic layers. The effect of a soft-magnetic phase on the magnetization reversal of the magnetic bilayer and on the formation of a 1D spin spring in the magnetic bilayer has been demonstrated. An inf lection that has been detected on the arch of the hysteresis loop only for the system with weak exchange coupling is completely determined by the behavior of the soft layer in the external magnetic field. The critical fields of magnetization reversal decrease with increasing thickness of the soft phase.  相似文献   

8.
Physics of the Solid State - Magnetization reversal of a hard/soft magnetic bilayer in an external magnetic field has been studied by the Monte Carlo method. The magnetization reversal curves of a...  相似文献   

9.
Magnetic reversal processes of a FePt/α-Fe/FePt trilayer system with in-plane easy axes have been investigated within a micromagnetic approach. It is found that the magnetic reversal process consists of three steps: nucleation of a prototype of domain wall in the soft phase, the evolution as well as the motion of the domain wall from the soft to the hard phase and finally, the magnetic reversal of the hard phase. For small soft layer thickness Ls, the three steps are reduced to one single step, where the magnetizations in the two phases reverses simultaneously and the hysteresis loops are square with nucleation as the coercivity mechanism. As Ls increases, both nucleation and pinning fields decrease. In the meantime, the single-step reversal expands to a standard three-step one and the coercivity mechanism changes from nucleation to pinning. The critical thickness where the coercivity mechanism alters, could be derived analytically, which is found to be inversely proportional to the square root of the crystalline anisotropy of the hard phase. Such a scaling law might provide an easy way to test the present theory. Further increase of Ls leads to the change of the coercivity mechanism from pinning to nucleation.  相似文献   

10.
The relation between microscopic properties (e.e.,layer thickness,easy axis orientation) and the macroscopic magnetic properties such as remanent magnetization of the ferromagnetic multilayer system is investigated based on a simple micromagnet approach.We concentrate on a multilayer design with periodic boundary condition,where alternating soft/hard layers build a nanostructured multilayer.For any easy axis direction in the soft and hard layers a simple explicit expression of remanence of the system has been derived analytically.We find that the remanence clearly depends on the thickness of the soft magnetic layer and is nearly independent of the thickness of hard magnetic layer.On the other hand,the remanence increases upon reducing the angle enclosed by the saturation magnetization and the easy axis directions of soft magnetic layer.However,it is unsensitive to the easy axis direction of hard magnetic layer,but there exists a maximum remanence for a certain easy axis direction of hard magnetic layer.  相似文献   

11.
The effective interlayer coupling between antiferromagnetically coupled hard and soft ferromagnetic thin films is investigated as a function of the magnetic bit length in the hard layer, which is controlled using a magnetic recording system. The interlayer coupling is explored by studying the magnetization reversal of the soft layer. As the bit length decreases, the coupling evolves from antiferromagnetic to biquadratic to uncoupled. These results are reproduced using a micromagnetic model and determine the applicability range of Slonczewski's fluctuation model of biquadratic coupling.  相似文献   

12.
L1(0) FePt is an important material for the fabrication of high density perpendicular recording media, but the ultrahigh coercivity of L1(0) FePt restricts its use. Tilting of the magnetic easy axis and the introduction of a soft magnetic underlayer can solve this problem. However, high temperature processing and the requirement of epitaxial growth conditions for obtaining an L1(0) FePt phase are the main hurdles to be overcome. Here, we introduce a bilayered magnetic structure ((111) L1(0) FePt/glassy Fe(71)Nb(4)Hf(3)Y(2)B(20)/SiO(2)/Si) in which the magnetic easy axis of L1(0) FePt is tilted by ~36° from the film plane and epitaxial growth conditions are not required. The soft magnetic underlayer not only promotes the growth of L1(0) FePt with the preferred orientation but also provides an easy cost-effective micro/nanopatterning of recording bits. A detailed magnetic characterization of the bilayered structure in which the thickness of (111) L1(0) FePt with the soft magnetic Fe(71)Nb(4)Hf(3)Y(2)B(20) glassy underlayer varied from 5 to 60 nm is carried out in an effort to understand the magnetization switching mechanism. The magnetization switching behavior is almost the same for bilayered structures in which FePt layer thickness is >10 nm (greater than the domain wall thickness of FePt). For FePt film ~10 nm thick, magnetization reversal takes place in a very narrow field range. Magnetization reversal first takes place in the soft magnetic underlayer. On further increase in the reverse magnetic field, the domain wall in the soft magnetic layer compresses at the interface of the hard and soft layers. Once the domain wall energy becomes sufficiently large to overcome the nucleation energy of the domain wall in L1(0) FePt, the magnetization of the whole bilayer is reversed. This process takes place quickly because the domain walls in the hard layer do not need to move, and the formation of a narrower domain wall may not be favorable energetically. Our results showed that the present bilayered structure is very promising for the fabrication of tilted bit-patterned magnetic recording media.  相似文献   

13.
The magnetic properties of a film trilayer consisting of hard magnetic and soft magnetic Co-P layers separated by a nonmagnetic Ni-P spacer have been studied. The features of the hysteresis shift relative to the zero exchange magnetic field and of the coercivity of the soft magnetic layer in the dependence on thicknesses of the hard magnetic layer and spacer have been considered. The dynamic changes in the shift of the hysteresis of the soft magnetic layer versus the magnetization reversal time after saturation of the hard magnetic layer have been found and investigated.  相似文献   

14.
The macroscopic magnetic properties such as remanent magnetization of the ferromagnetic multilayer system with random easy axis orientations is investigated by using a effective micromagnet approach. The multilayer, which alternating soft/hard layers in which their easy axis orientations is random build a nanostructured multilayer, is considered to meet periodic boundary condition, the dependence of remanence on thickness has been analytical derived. Author find that the remancence clearly depends on the thickness of the soft magnetic layer nearly independence of thickness of hard magnetic layer. this analytical results are in excellent agreement with previous numerical results.  相似文献   

15.
The magnetic and microstructural properties and magnetic domain configuration of exchange-spring model bilayer samples based on L10-type magnetically-hard CoPt and magnetically soft Co were examined and analyzed. Bilayers of varying thicknesses and annealing conditions were examined with room-temperature and elevated-temperature SQUID magnetometry, X-ray diffraction, transmission electron microscopy and magnetic force microscopy. While lower-temperature (300°C ⩽T⩽400°C) annealing treatments produced little change in the domain configuration, it did produce subtle change in the microstructure and a noticeable increase in the degree of exchange coupling of the bilayers. Higher-temperature (T=550°C) annealing treatments produced profound changes in all parameters: the magnetic reversal behavior, the remanence ratio and the magnetic domain configuration. These changes were accompanied by distinct changes in the bilayer phase constitution and proportions of hard and soft phases produced by interdiffusion of the Co and CoPt layers which altered the overall anisotropy and associated magnetic behavior of the system. To support these conjectures micromagnetic modeling of different conditions of the bilayer properties showed that changing the relative proportions of the hard and soft layers could indeed lead to changes in the magnetic behavior similar to those observed in the experimental systems. Both the experimental and modeling-derived results of this work demonstrate that the bulk technical properties of a hard/soft magnetic nanocomposite material depend on the relative proportions of the phases present, the degree of exchange coupling across the interface between those phases as well as on the physical and magnetic properties of those phases. Changing the physical properties of the phases in systematic ways allows the magnetic properties of the ensemble to be tailored.  相似文献   

16.
A thorough micromagnetic analysis of the exchange-spring problem is reported with special emphasis on multilayers constituted by hard–soft exchange-coupled phases. The developed one—dimensional micromagnetic model leads to a complete magnetic phase diagram in terms of layer thicknesses. Both perpendicular and parallel configurations are considered. The phase diagram provides information on the type of demagnetization processes and the critical fields at which nucleation and reversal take place, depending on the intrinsic properties of the chosen soft and hard materials. The model has been applied to a variety of hard magnetic phases (e.g., FePt, CoPt, SmCo and NdFeB), coupled to different soft materials (e.g., Fe, FeCo, FeRh or permalloy) both in the form of bilayers and multilayers. The most significant results will be highlighted.  相似文献   

17.
《Current Applied Physics》2020,20(4):477-483
A systematic study of the magnetization reversal behavior in the regular arrangement of L10-FePt based exchange-spring nanomagnets with different thicknesses of the Co soft magnetic layer is presented. The magnetic property of the hard magnet is compared to two tuned exchange-spring magnets: its systems of 20 nm L10-FePt/3 nm, and 7 nm Co. In particular, we focus on the switching field distribution. The exchange coupling showed narrower SFD, in spite of the decoupled part switches earlier. The magnetization switching mechanism of exchange-spring nanomagnets patterns has been revealed with a first-order reversal curves technique and the switching field distribution. Further, the microscopic results using magnetic force microscopy show that the spin rotation of the non-interacting part in the thicker soft layered exchange-spring magnet. The part influences the magnetization reversal process. According to the experimental results, exchange coupling strength can be tuned by the thickness of the soft magnetic layer.  相似文献   

18.
The remanent magnetization of a hard ferromagnetic CoPtCr layer is progressively decreased by repeated switching of a neighboring soft magnetic layer. We show that this effect depends strongly on the thickness of the CoPtCr layer and the spacing between the hard and soft layers. We propose a model that accounts for these results: An interlayer magnetostatic coupling is induced by large stray fields from domain walls that form within the soft layer during its magnetization reversal.  相似文献   

19.
Data-mining techniques using machine learning are powerful and efficient for materials design, possessing great potential for discovering new materials with good characteristics. Here, this technique has been used on composition design for La(Fe,Si/Al)_(13)-based materials, which are regarded as one of the most promising magnetic refrigerants in practice. Three prediction models are built by using a machine learning algorithm called gradient boosting regression tree(GBRT) to essentially find the correlation between the Curie temperature(T_C), maximum value of magnetic entropy change((?S_M)_(max)),and chemical composition, all of which yield high accuracy in the prediction of T_C and(?SM)_(max). The performance metric coefficient scores of determination(R~2) for the three models are 0.96, 0.87, and 0.91. These results suggest that all of the models are well-developed predictive models on the challenging issue of generalization ability for untrained data, which can not only provide us with suggestions for real experiments but also help us gain physical insights to find proper composition for further magnetic refrigeration applications.  相似文献   

20.
In this paper we present the results of applying the first-order reversal curves (FORC) diagram experimental method to the analysis of the magnetization processes of NdFeB-based permanents magnets. The FORC diagrams for this kind of exchange spring magnets show the existence of two magnetic phases—a soft magnetic phase and a hard magnetic one. Micromagnetic modeling is used for validating the hypotheses regarding the origin of the different features of the experimental FORC diagrams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号