首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
阐述了非共价键改性在碳纳米管功能化方面的应用进展,详细介绍了表面活性剂修饰、小分子的π-π堆积相互作用、聚合物的缠绕和包覆、生物大分子的包裹和吸附、内嵌填充修饰等改性方式的研究现状,并提出了非共价键法修饰碳纳米管未来改进的方向,探讨了不同修饰物与碳纳米管之间的相互作用机制。其中,含有共轭基团或芳基基团的聚合物,可以通过其共轭或芳基基团与碳纳米管间的π-π相互作用和范德华作用,实现对碳纳米管的非共价物理包覆。经聚合物功能化的碳纳米管在电池、催化剂、生物传感器和电化学装置上有较好的应用前景。此外,生物大分子对碳纳米管的非共价修饰不仅可以改善其在生物体系中的水溶性,而且通过合理设计还可以避免蛋白质、核酸等生物分子的非特异性吸附,从而得到具有特异性的生物分子-碳纳米管复合体系。  相似文献   

2.
近年来,二维大分子蓬勃发展,已经成为继经典线形与支化拓扑大分子之后的一个重要分支.二维大分子不但补全了经典高分子科学中缺失的二维分子维度,而且成为具有广泛且重要应用前景的材料新体系,将延续高分子科学在国民经济生产生活中的重要作用.类比成熟的线形高分子系统,深入理解二维大分子的构象与凝聚态并建立精确的材料结构调控方法是其发展的基础,目前仍然处于起步阶段.本文以我们课题组的研究工作为主线,以氧化石墨烯为二维大分子理想模型,总结了二维大分子构象行为与凝聚态结构调控的研究思路与进展.简要回顾了二维大分子构象的研究历史,介绍了构象行为规律、液晶凝聚态以及固态凝聚结构调控方法的系列新进展,并对未来二维大分子构象及凝聚态研究进行了展望,为二维大分子及材料的发展提供了新思路.  相似文献   

3.
硒是人体必需的一种微量元素, 本课题组近年的研究表明含硒化学键具有诸多独特的化学性质. 二硒键具有氧化还原双重响应性, 同时是一类光响应的动态共价键, 能够在可见光辐照下发生可逆的交换反应. 将含硒化学键这些独特的性质与表界面化学相结合可以赋予体系独特的响应行为. 本文综合评述了本课题组近年来在含硒表界面化学领域的研究进展: 采用单分子力谱揭示了含硒化学键相互作用的力学规律; 通过表界面化学实现了二硒键动态平衡的调控; 基于二硒键氧化还原及可见光响应性实现了表界面可逆修饰、 二维材料功能化及层层组装膜材料的制备, 在生物医用、 液体输运等领域具有潜在应用价值.  相似文献   

4.
碳纳米材料的超分子表面修饰及应用   总被引:1,自引:0,他引:1  
目前碳纳米材料已经成为纳米科学研究中的热点,它的特殊结构使其具有特殊的物理化学性能,对其进行超分子修饰可以提高其分散性以及赋予其新的性能,已经引起研究人员的广泛兴趣.本文综述了近年来碳纳米材料的超分子修饰以及其应用研究.重点阐述碳纳米管和石墨烯通过不同的超分子作用,如pi-pi相互作用、疏水相互作用、氢键相互作用、静电相互作用等进行修饰制备具有不同功能的超分子碳纳米材料,以及在光电材料、药物和基因传输以及化学生物传感器等领域的应用.  相似文献   

5.
通过超分子自组装构建发光材料是超分子化学研究的重要领域之一.超分子自组装作为一种简单且高效的手段,可以将不同结构的分子通过非共价键作用力构建成具有精确结构和多功能的组装体,进一步赋予了超分子材料独特的物理特性.由于超分子发光材料中非共价键相互作用力具有动态且可逆的性质,因此使其具有对刺激物特异性识别和对微环境变化敏感的特点,从而被广泛应用于生物传感和成像、药物传递、化学传感、人工光收集系统、信息加密和光催化等领域.基于此,为了了解超分子发光材料的最新研究进展,主要按照氢键相互作用、π-π堆积和多种非共价键相互作用,较系统地阐述了最近四年超分子发光材料,从设计到制备再到应用的最新研究进展,并且进一步展望了其未来所面临的挑战.  相似文献   

6.
材料接触生物环境首先是通过其界面,这种材料界面与生物环境中的生物分子及细胞之间的相互作用决定着材料生物功能的实现。因此,调控材料与生物体的界面相互作用几乎是所有生物材料的研究及应用首先和必然面对的关键共性问题。本文综述了近年来我们课题组在生物表界面领域的研究及其最新进展。从分子层面上设计生物功能表面入手,建立了一系列普适、高效、简单易行的表面功能化新方法用于改变材料表面的物理化学性质,进而调控材料表面与蛋白质或细胞/细菌之间的相互作用。  相似文献   

7.
聚酰胺-胺型树枝状化合物与细胞色素C的结合作用   总被引:2,自引:0,他引:2  
制备具有分子识别功能的材料 ,特别是设计合成某种分子 ,使其能够识别蛋白质表面 ,并干扰或促进蛋白质的特定生理功能 ,是生物有机化学中一个尚待解决的重要问题 ,也是揭开蛋白质分子识别与相互作用机理的重要问题 .人们对生物大分子———蛋白质分子之间的识别和相互作用进行了广泛的研究 ,总结出了一些规律 .( 1 )蛋白质复合物中最直接相互作用的残基数目共为 2 7~44个 ,相对与总的残基数来说很少 ,但是对分子间的识别和稳定作用却起决定性作用 ;( 2 )蛋白质复合物的接触面积为 6~ 1 0nm2 ,既需要比较大的接触面积 ,复合物才比较稳定 …  相似文献   

8.
离子液体作为一类新型绿色溶剂,因其独特的理化性质,被广泛应用于催化、有机合成、分离富集和电化学等领域。其中,离子液体在生物大分子的分离纯化、催化和降解方面显示出良好的应用前景,成为研究的热点领域之一。本文从离子液体与生物大分子的本质关系出发,对离子液体在DNA和蛋白质的分离纯化、酶的活性稳定性和天然纤维素溶解等过程中与生物大分子之间的相互作用进行了综述。  相似文献   

9.
无机小分子与细胞中生物大分子的相互作用   总被引:1,自引:0,他引:1  
细胞是生命体的基本组成单元,是一个复杂的、能真实反映生物体系的活体.以细胞为研究对象,开展无机小分子与大分子相互作用的研究,有可能真正理解生命过程中一些问题的化学本质.无机小分子与细胞生物大分子相互作用的研究内容非常丰富,目前应着重研究那些对人类有严重威胁的一些疾病如糖尿病、心血管病、肿瘤、神经退行性病变等有关的细胞无机化学中无机小分子与生物大分子相互作用的问题.这对于了解生物大分子的结构、功能,对于疾病预防和治疗,了解小分子对生命过程的调控机制,对于药物作用新靶点的发现、药物的分子设计、作用机理和药物的研究与开发,均具有十分重要的科学意义和应用价值.论文还就开展无机小分子与细胞中生物大分子的相互作用研究的目标和内容提出了具体的建议.  相似文献   

10.
生物传感技术广泛地应用于疾病诊断、临床治疗、环境监测、食品安全等领域.由于二维纳米材料具有独特的物理和化学性质,使其在生物传感领域的应用研究快速发展.本文首先介绍了二维纳米材料的晶体结构和合成方法,然后总结了基于比色、荧光、液滴微流控和微流控纸基等方法与二维纳米材料结合,应用于生物传感的最新研究进展,最后对未来的发展做...  相似文献   

11.
冯娟娟  孙明霞  冯洋  辛绪波  丁亚丽  孙敏 《色谱》2022,40(11):953-965
样品前处理技术在样品分析中发挥着越来越重要的作用,而对分析物的富集能力和对样品基体的净化程度主要取决于高效的样品前处理材料,所以发展高性能的样品前处理材料一直是该领域的前沿研究方向。近年来,各类先进材料已经被引入样品前处理领域,发展了多种高性能的萃取材料。由于独特的物理化学性质,石墨烯已在各个研究领域获得广泛关注,在样品前处理领域也发挥着重要作用。基于高的比表面积、大的π电子结构、优异的吸附性能、丰富的官能团和易于化学改性等优点,石墨烯和氧化石墨烯基萃取材料被成功应用于各种样品的前处理,对不同领域中多种类型分析物表现出优异的萃取性能。该论文总结和讨论了近3年来石墨烯材料(石墨烯、氧化石墨烯及其功能化材料)在柱固相萃取、分散固相萃取、磁性固相萃取、搅拌棒萃取、纤维固相微萃取和管内固相微萃取等方面的研究进展。基于多种萃取机理如π-π、静电、疏水、亲水、氢键等相互作用,石墨烯萃取材料能够高效萃取和选择性富集不同类别的目标分析物,如重金属离子、多环芳烃、塑化剂、雌激素、药物分子、农药残留、兽药残留等。基于新型石墨烯萃取材料的各种样品前处理技术与多种检测技术如色谱、质谱、原子吸收光谱等联用,广泛应用于环境监测、食品安全和生化分析等领域。最后,总结了石墨烯在样品前处理领域中存在的问题,并展望了未来的发展趋势。  相似文献   

12.
梁涛  王斌 《物理化学学报》2022,38(1):2011059-0
大批量石墨烯可控制备技术的逐渐成熟为实现其宏观组装和应用提供了基础。在众多的组装策略中,调节石墨烯层间的界面相互作用可以直接影响组装体的力学、电学、热学以及渗透等性质,具有重要的意义。石墨烯片层间以共价键连接的层间共价石墨烯材料以其可调的层间距、较强的层间作用力、丰富的功能化、以及可能的原子构型重排等特性,受到了广泛的关注和深入的研究。相比于其他非共价的键合手段,共价连接是一种更为牢固的枢纽。本文中我们将总结讨论层间共价石墨烯材料的构筑方法、性能以及应用。在构筑方法中,依据石墨烯本身的制备方法分为氧化还原法以及化学气相沉积法,而在氧化还原法中,以其宏观材料的形貌分为纸状和纤维状来讨论。接着,我们重点介绍了层间共价对其力学和电学性能的影响,并概述了此类宏观组装体材料的应用。层间共价石墨烯材料继承了石墨烯自身优异的特性,同时也具有宏观组装所赋予的性能,有望在多个领域得到广泛的应用。  相似文献   

13.
自2004年被成功制备后,石墨烯因其独特迷人的性质在近十几年来备受关注,同时也引发了二维纳米材料的研究热潮。单原子层厚度的二维结构赋予石墨烯非同寻常的光学、电子学、磁学及力学等性质,使得石墨烯在生物学、医学、化学、物理学和环境科学等多个领域展现出极大的应用潜力。制得注意的是,石墨烯在应用时通常需要进行功能化,调节其组成、大小、形状和结构等,以便于加工处理或满足不同的应用需求。石墨烯功能化方法多样,功能化产物也是种类繁多。然而,到目前为止,石墨烯功能化产物并没有系统全面的分类和精确的定义。因此,本文在系统总结现有石墨烯功能化研究的基础上,给出了石墨烯功能化产物的系统分类、各类的精确定义和相应的制备策略,并通过典型示例进行了详细地阐述。石墨烯功能化的产物统称为“功能化石墨烯材料”,分为两类:“功能化石墨烯”和“功能化石墨烯复合材料”。功能化石墨烯材料的制备可由“自上而下”和“自下而上”两种策略实现。制备策略的选择取决于应用需求。系统分类、精确命名和制备策略的归纳必将有助于功能化石墨烯材料的进一步发展。  相似文献   

14.
陈熙  张胜利 《物理化学学报》2018,34(9):1061-1073
二维碳材料因其独特的性质成为凝聚态物理、纳米电子学、生物医药等领域的前沿研究热点。石墨二炔具有天然的半导体特性及独特的大孔网状结构,在纳米电子器件和生物传感方面比石墨烯更具优势。本文使用第一性原理计算研究了单层石墨二炔的纳米带电子输运性质和及石墨二炔对小分子的吸附。我们考虑用掺杂3d金属原子的方法来增强对分子的吸附力。选择在石墨二炔表面吸附能较大的钪(Sc)、钛(Ti)原子,确定石墨二炔表面Sc、Ti单原子在室温下的稳定性,研究了Sc、Ti掺杂石墨二炔用于分子检测的潜在可能。从能带、载流子浓度等方面全面探讨了Sc、Ti掺杂石墨二炔对甲醛分子(HCHO)的响应。又进一步研究了石墨二炔与氨基酸分子间相互作用,发现色散力在相互作用中占主导地位。研究了吸附氨基酸对石墨二炔电子输运的影响,探讨石墨二炔在生物传感方面的潜在应用。  相似文献   

15.
有机硅材料具有优异的热稳定性、生物相容性、电绝缘性能和透气性等,在国民经济各个领域已得到广泛应用.近年来,具有自修复和可塑性的有机硅超分子材料引起了人们的广泛关注,各种各样的功能材料不断被开发出来.本文综合评述了有机硅超分子材料的合成、性能和应用等方面的近期研究进展,重点阐述了氢键型、金属配位键型、Lewis酸碱对型、离子键型及π-π堆积型有机硅超分子材料,并对其发展前景进行了展望.  相似文献   

16.
《中国化学快报》2022,33(10):4437-4448
For more than a decade, the exfoliation of graphene and other layered materials has led to a tremendous amount of research in two-dimensional (2D) materials, among which 2D transition metal chalcogenides (TMCs) nanomaterials have attracted much attention in a wide range of applications including photoelectric devices, lithium-ion batteries, catalysis, and energy conversion and storage owing to their unique photoelectric physical properties. With such large specific surface area, strong near-infrared (NIR) absorption and abundant chemical element composition, 2D TMCs nanomaterials have become good candidates in biomedical imaging and cancer treatment. This review systematically summarizes recent progress on 2D TMCs nanomaterials, which includes their synthesis methods and applications in cancer treatment. At the end of this review, we also highlight the future prospects and challenges of 2D TMCs nanomaterials. It is expected that this work can provide the readers with a detailed overview of the synthesis of 2D TMCs and inspire more novel functional biomaterials based on 2D TMCs for cancer treatment in the future.  相似文献   

17.
The graphene family of nanomaterials (GFN) have a common carbon lattice base structure but represent a diverse range of materials with distinct chemical and physical characteristics. These characteristics are determined by the fabrication method and impart each material with specific chemical properties which govern interaction with cells and biomolecules, and physical properties that give unique nanotopography, stiffness, and electrical properties. Remarkably, members of the GFN have been shown to promote tissue formation and influence cell differentiation in a variety of tissue types, including neural, bone, and cardiac muscle, making them of high interest to the biomedical field. The diverse range of materials and experimental setups in the literature make uncovering the mechanism of action challenging. Nevertheless, it is becoming clear that the ability of GFN to form non-covalent interactions (π-π, hydrogen bonding, electrostatic) with biomolecules may increase their bioavailability via sequestering/concentration/conformation protection to induce cell differentiation. In addition to the chemical properties, the stimulation of mechanosensing pathways, cytoskeletal rearrangement, and enhanced electrical activity of cells on GFN substrates demonstrates the importance of the physical properties in directing cell differentiation. The understanding of the mechanism behind the ability of GFN to enhance cell differentiation will allow the design and selection of materials with the desired properties for tissue repair and regeneration.  相似文献   

18.
The spread of antimicrobial resistance and lesser development of new antibiotics have intensified the search for new antimicrobial and diagnostic vehicles. Carbon nanomaterials (CNMs), which broadly include carbon dots, carbon nanotubes, and graphene/graphene oxide nanostructures, have emerged as promising theranostic materials exhibiting, in many instances, potent antibacterial activities and diagnostic capabilities. Ease of synthesis, tunable physicochemical properties, biocompatibility, and diverse modes of action make CNMs a powerful class of theranostic nanomaterials. This review discusses recent studies illuminating innovative new CNMs and their applications in bacterial theranostics. We particularly emphasize the relationship between the structural parameters and overall chemical properties of CNMs and their biological impact and utilization. Overall, the expanding work on the development and use of CNMs in therapeutic, sensing, and diagnostic applications in the microbial world underscores the considerable potential of these nanomaterials.  相似文献   

19.
The fascinating properties of single-layer graphene isolated by mechanical exfoliation have inspired extensive research efforts toward two-dimensional (2D) materials. Layered compounds serve as precursors for atomically thin 2D materials (briefly, 2D nanomaterials) owing to their strong intraplane chemical bonding but weak interplane van der Waals interactions. There are newly emerging 2D materials beyond graphene, and it is becoming increasingly important to develop cost-effective, scalable methods for producing 2D nanomaterials with controlled microstructures and properties. The variety of developed synthetic techniques can be categorized into two classes: bottom-up and top-down approaches. Of top-down approaches, the exfoliation of bulk 2D materials into single or few layers is the most common. This review highlights chemical and physical exfoliation methods that allow for the production of 2D nanomaterials in large quantities. In addition, remarkable examples of utilizing exfoliated 2D nanomaterials in energy and environmental applications are introduced.  相似文献   

20.
Owing to the remarkable physicochemical properties such as hydrophobicity, conductivity, elasticity, and light weight, graphene‐based materials have emerged as one of the most appealing carbon allotropes in materials science and chemical engineering. Unfortunately, pristine graphene materials lack functional groups for further modification, severely hindering their practical applications. To render graphene materials with special characters for different applications, graphene oxide or reduced graphene oxide has been functionalized with different organic agents and assembled together, via covalent binding and various noncovalent forces such as π–π interaction, electrostatic interaction, and hydrogen bonding. In this review, we briefly discuss the state‐of‐the‐art synthetic strategies and properties of organic‐functionalized graphene‐based materials, and then, present the prospective applications of organic‐functionalized graphene‐based materials in sample preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号