首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The horizontal-longitudinal correlation of acoustic field for the receiver near the bottom is analyzed by using numerical modeling. An approximate analytical solution of horizontal-longitudinal correlation coefficient is derived based on the ray method. Combining the characteristic of Lloyd's mirror interference pattern, the variability of acoustic field and its effect on horizontal-longitudinal spatial correlation are discussed. The theoretical prediction agrees well with the numerical results. Experimental results confirm the validity of analytical solution.Finally, the applicability of the analytical solution is summarized. The conclusion is beneficial for the design of bottom-moored array and the estimation of integral time for moving source localization.  相似文献   

2.
Automated grading systems using deep convolution neural networks (DCNNs) have proven their capability and potential to distinguish between different breast cancer grades using digitized histopathological images. In digital breast pathology, it is vital to measure how confident a DCNN is in grading using a machine-confidence metric, especially with the presence of major computer vision challenging problems such as the high visual variability of the images. Such a quantitative metric can be employed not only to improve the robustness of automated systems, but also to assist medical professionals in identifying complex cases. In this paper, we propose Entropy-based Elastic Ensemble of DCNN models (3E-Net) for grading invasive breast carcinoma microscopy images which provides an initial stage of explainability (using an uncertainty-aware mechanism adopting entropy). Our proposed model has been designed in a way to (1) exclude images that are less sensitive and highly uncertain to our ensemble model and (2) dynamically grade the non-excluded images using the certain models in the ensemble architecture. We evaluated two variations of 3E-Net on an invasive breast carcinoma dataset and we achieved grading accuracy of 96.15% and 99.50%.  相似文献   

3.
Attention mechanisms can improve the performance of neural networks, but the recent attention networks bring a greater computational overhead while improving network performance. How to maintain model performance while reducing complexity is a hot research topic. In this paper, a lightweight Mixture Attention (MA) module is proposed to improve network performance and reduce the complexity of the model. Firstly, the MA module uses multi-branch architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Secondly, in order to reduce the number of parameters, each branch uses group convolution independently, and the feature maps extracted by different branches are fused along the channel dimension. Finally, the fused feature maps are processed using the channel attention module to extract statistical information on the channels. The proposed method is efficient yet effective, e.g., the network parameters and computational cost are reduced by 9.86% and 7.83%, respectively, and the Top-1 performance is improved by 1.99% compared with ResNet50. Experimental results on common-used benchmarks, including CIFAR-10 for classification and PASCAL-VOC for object detection, demonstrate that the proposed MA outperforms the current SOTA methods significantly by achieving higher accuracy while having lower model complexity.  相似文献   

4.
Social networks have drastically changed how people obtain information. News in social networks is accompanied by images and videos and thus receives more attention from readers as opposed to traditional sources. Unfortunately, fake-news publishers often misuse these advantages to spread false information rapidly. Therefore, the early detection of fake news is crucial. The best way to address this issue is to design an automatic detector based on fake-news content. Thus far, many fake-news recognition systems, including both traditional machine learning and deep learning models, have been proposed. Given that manual feature-extraction methods are very time-consuming, deep learning methods are the preferred tools. This study aimed to enhance the performance of existing approaches by utilizing an ensemble of deep learners based on attention mechanisms. To a great extent, the success of an ensemble model depends on the variety of its learners. To this end, we propose a novel loss function that enforces each learner to attend to different parts of news content on the one hand and obtain good classification accuracy on the other hand. Also, the learners are built on a common deep-feature extractor and only differ in their attention modules. As a result, the number of parameters is reduced efficiently and the overfitting problem is addressed. We conducted several experiments on some widely used fake-news detection datasets. The results confirm that the proposed method consistently surpasses the existing peer methods.  相似文献   

5.
Speaker recognition is an important classification task, which can be solved using several approaches. Although building a speaker recognition model on a closed set of speakers under neutral speaking conditions is a well-researched task and there are solutions that provide excellent performance, the classification accuracy of developed models significantly decreases when applying them to emotional speech or in the presence of interference. Furthermore, deep models may require a large number of parameters, so constrained solutions are desirable in order to implement them on edge devices in the Internet of Things systems for real-time detection. The aim of this paper is to propose a simple and constrained convolutional neural network for speaker recognition tasks and to examine its robustness for recognition in emotional speech conditions. We examine three quantization methods for developing a constrained network: floating-point eight format, ternary scalar quantization, and binary scalar quantization. The results are demonstrated on the recently recorded SEAC dataset.  相似文献   

6.
In this work, we formulate the image in-painting as a matrix completion problem. Traditional matrix completion methods are generally based on linear models, assuming that the matrix is low rank. When the original matrix is large scale and the observed elements are few, they will easily lead to over-fitting and their performance will also decrease significantly. Recently, researchers have tried to apply deep learning and nonlinear techniques to solve matrix completion. However, most of the existing deep learning-based methods restore each column or row of the matrix independently, which loses the global structure information of the matrix and therefore does not achieve the expected results in the image in-painting. In this paper, we propose a deep matrix factorization completion network (DMFCNet) for image in-painting by combining deep learning and a traditional matrix completion model. The main idea of DMFCNet is to map iterative updates of variables from a traditional matrix completion model into a fixed depth neural network. The potential relationships between observed matrix data are learned in a trainable end-to-end manner, which leads to a high-performance and easy-to-deploy nonlinear solution. Experimental results show that DMFCNet can provide higher matrix completion accuracy than the state-of-the-art matrix completion methods in a shorter running time.  相似文献   

7.
Chest compressions during cardiopulmonary resuscitation (CPR) induce artifacts in the ECG that may provoque inaccurate rhythm classification by the algorithm of the defibrillator. The objective of this study was to design an algorithm to produce reliable shock/no-shock decisions during CPR using convolutional neural networks (CNN). A total of 3319 ECG segments of 9 s extracted during chest compressions were used, whereof 586 were shockable and 2733 nonshockable. Chest compression artifacts were removed using a Recursive Least Squares (RLS) filter, and the filtered ECG was fed to a CNN classifier with three convolutional blocks and two fully connected layers for the shock/no-shock classification. A 5-fold cross validation architecture was adopted to train/test the algorithm, and the proccess was repeated 100 times to statistically characterize the performance. The proposed architecture was compared to the most accurate algorithms that include handcrafted ECG features and a random forest classifier (baseline model). The median (90% confidence interval) sensitivity, specificity, accuracy and balanced accuracy of the method were 95.8% (94.6–96.8), 96.1% (95.8–96.5), 96.1% (95.7–96.4) and 96.0% (95.5–96.5), respectively. The proposed algorithm outperformed the baseline model by 0.6-points in accuracy. This new approach shows the potential of deep learning methods to provide reliable diagnosis of the cardiac rhythm without interrupting chest compression therapy.  相似文献   

8.
Paraphrase generation is an important yet challenging task in natural language processing. Neural network-based approaches have achieved remarkable success in sequence-to-sequence learning. Previous paraphrase generation work generally ignores syntactic information regardless of its availability, with the assumption that neural nets could learn such linguistic knowledge implicitly. In this work, we make an endeavor to probe into the efficacy of explicit syntactic information for the task of paraphrase generation. Syntactic information can appear in the form of dependency trees, which could be easily acquired from off-the-shelf syntactic parsers. Such tree structures could be conveniently encoded via graph convolutional networks to obtain more meaningful sentence representations, which could improve generated paraphrases. Through extensive experiments on four paraphrase datasets with different sizes and genres, we demonstrate the utility of syntactic information in neural paraphrase generation under the framework of sequence-to-sequence modeling. Specifically, our graph convolutional network-enhanced models consistently outperform their syntax-agnostic counterparts using multiple evaluation metrics.  相似文献   

9.
Caries prevention is essential for oral hygiene. A fully automated procedure that reduces human labor and human error is needed. This paper presents a fully automated method that segments tooth regions of interest from a panoramic radiograph to diagnose caries. A patient’s panoramic oral radiograph, which can be taken at any dental facility, is first segmented into several segments of individual teeth. Then, informative features are extracted from the teeth using a pre-trained deep learning network such as VGG, Resnet, or Xception. Each extracted feature is learned by a classification model such as random forest, k-nearest neighbor, or support vector machine. The prediction of each classifier model is considered as an individual opinion that contributes to the final diagnosis, which is decided by a majority voting method. The proposed method achieved an accuracy of 93.58%, a sensitivity of 93.91%, and a specificity of 93.33%, making it promising for widespread implementation. The proposed method, which outperforms existing methods in terms of reliability, and can facilitate dental diagnosis and reduce the need for tedious procedures.  相似文献   

10.
Recently, deep learning (DL) has been utilized successfully in different fields, achieving remarkable results. Thus, there is a noticeable focus on DL approaches to automate software engineering (SE) tasks such as maintenance, requirement extraction, and classification. An advanced utilization of DL is the ensemble approach, which aims to reduce error rates and learning time and improve performance. In this research, three ensemble approaches were applied: accuracy as a weight ensemble, mean ensemble, and accuracy per class as a weight ensemble with a combination of four different DL models—long short-term memory (LSTM), bidirectional long short-term memory (BiLSTM), a gated recurrent unit (GRU), and a convolutional neural network (CNN)—in order to classify the software requirement (SR) specification, the binary classification of SRs into functional requirement (FRs) or non-functional requirements (NFRs), and the multi-label classification of both FRs and NFRs into further experimental classes. The models were trained and tested on the PROMISE dataset. A one-phase classification system was developed to classify SRs directly into one of the 17 multi-classes of FRs and NFRs. In addition, a two-phase classification system was developed to classify SRs first into FRs or NFRs and to pass the output to the second phase of multi-class classification to 17 classes. The experimental results demonstrated that the proposed classification systems can lead to a competitive classification performance compared to the state-of-the-art methods. The two-phase classification system proved its robustness against the one-phase classification system, as it obtained a 95.7% accuracy in the binary classification phase and a 93.4% accuracy in the second phase of NFR and FR multi-class classification.  相似文献   

11.
Link prediction is an important task in the field of network analysis and modeling, and predicts missing links in current networks and new links in future networks. In order to improve the performance of link prediction, we integrate global, local, and quasi-local topological information of networks. Here, a novel stacking ensemble framework is proposed for link prediction in this paper. Our approach employs random forest-based recursive feature elimination to select relevant structural features associated with networks and constructs a two-level stacking ensemble model involving various machine learning methods for link prediction. The lower level is composed of three base classifiers, i.e., logistic regression, gradient boosting decision tree, and XGBoost, and their outputs are then integrated with an XGBoost model in the upper level. Extensive experiments were conducted on six networks. Comparison results show that the proposed method can obtain better prediction results and applicability robustness.  相似文献   

12.
深空探测具有目标距离远、信号往返时延大等特点。提出了一种适用于深空探测的音码混合测距方法,详细分析了测距信号发送、接收时序,并阐述了距离捕获、解模糊和跟踪的过程。最后进行了实验研究,与纯侧音测距相比,音码混合测距精度更高,测距值更稳定。  相似文献   

13.
Zhao  Y.  Tian  Sh.  Yu  L.  Zhang  Zh.  Zhang  W. 《Journal of Applied Spectroscopy》2021,88(2):441-451
Journal of Applied Spectroscopy - Hepatitis infections represent a major health concern worldwide. Numerous computer-aided approaches have been devised for the early detection of hepatitis. In this...  相似文献   

14.
Recently, there is a growing interest in applying Transfer Entropy (TE) in quantifying the effective connectivity between artificial neurons. In a feedforward network, the TE can be used to quantify the relationships between neuron output pairs located in different layers. Our focus is on how to include the TE in the learning mechanisms of a Convolutional Neural Network (CNN) architecture. We introduce a novel training mechanism for CNN architectures which integrates the TE feedback connections. Adding the TE feedback parameter accelerates the training process, as fewer epochs are needed. On the flip side, it adds computational overhead to each epoch. According to our experiments on CNN classifiers, to achieve a reasonable computational overhead–accuracy trade-off, it is efficient to consider only the inter-neural information transfer of the neuron pairs between the last two fully connected layers. The TE acts as a smoothing factor, generating stability and becoming active only periodically, not after processing each input sample. Therefore, we can consider the TE is in our model a slowly changing meta-parameter.  相似文献   

15.
In this paper, we study the learnability of the Boolean inner product by a systematic simulation study. The family of the Boolean inner product function is known to be representable by neural networks of threshold neurons of depth 3 with only 2n+1 units (n the input dimension)—whereas an exact representation by a depth 2 network cannot possibly be of polynomial size. This result can be seen as a strong argument for deep neural network architectures. In our study, we found that this depth 3 architecture of the Boolean inner product is difficult to train, much harder than the depth 2 network, at least for the small input size scenarios n16. Nonetheless, the accuracy of the deep architecture increased with the dimension of the input space to 94% on average, which means that multiple restarts are needed to find the compact depth 3 architecture. Replacing the fully connected first layer by a partially connected layer (a kind of convolutional layer sparsely connected with weight sharing) can significantly improve the learning performance up to 99% accuracy in simulations. Another way to improve the learnability of the compact depth 3 representation of the inner product could be achieved by adding just a few additional units into the first hidden layer.  相似文献   

16.
17.
18.
One of the most effective image processing techniques is the use of convolutional neural networks that use convolutional layers. In each such layer, the value of the layer’s output signal at each point is a combination of the layer’s input signals corresponding to several neighboring points. To improve the accuracy, researchers have developed a version of this technique, in which only data from some of the neighboring points is processed. It turns out that the most efficient case—called dilated convolution—is when we select the neighboring points whose differences in both coordinates are divisible by some constant . In this paper, we explain this empirical efficiency by proving that for all reasonable optimality criteria, dilated convolution is indeed better than possible alternatives.  相似文献   

19.
Image segmentation plays a central role in a broad range of applications, such as medical image analysis, autonomous vehicles, video surveillance and augmented reality. Portrait segmentation, which is a subset of semantic image segmentation, is widely used as a preprocessing step in multiple applications such as security systems, entertainment applications, video conferences, etc. A substantial amount of deep learning-based portrait segmentation approaches have been developed, since the performance and accuracy of semantic image segmentation have improved significantly due to the recent introduction of deep learning technology. However, these approaches are limited to a single portrait segmentation model. In this paper, we propose a novel approach using an ensemble method by combining multiple heterogeneous deep-learning based portrait segmentation models to improve the segmentation performance. The Two-Models ensemble and Three-Models ensemble, using a simple soft voting method and weighted soft voting method, were experimented. Intersection over Union (IoU) metric, IoU standard deviation and false prediction rate were used to evaluate the performance. Cost efficiency was calculated to analyze the efficiency of segmentation. The experiment results show that the proposed ensemble approach can perform with higher accuracy and lower errors than single deep-learning-based portrait segmentation models. The results also show that the ensemble of deep-learning models typically increases the use of memory and computing power, although it also shows that the ensemble of deep-learning models can perform more efficiently than a single model with higher accuracy using less memory and less computing power.  相似文献   

20.
Acoustical Physics - The article presents the results of a high-frequency experiment to localize a moving noise source using a cylindrical small-sized vector–scalar array....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号