首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent reports from our laboratory on the occurrence of methylbutyltins in marine sediments and seawater suggest that these compounds are formed in the environment by the methylation of both tributyltin (TBT) and that­of its degradation products, i.e. dibutyltin and monobutyltin, to give MenBu(4?n)Sn for which n = 1, 2 and 3 respectively. We investigated the possibility of inducing methylation of TBT in seawater–sediment mixtures in experiments carried out in vitro using environmental materials collected from a yacht marina in Msida, Malta. Three water–sediment mixtures, which were shown to contain TBT, dibutyltin and monobutyltin but no other organotins, were spiked with tributyltin chloride (90 mg in 100 ml sea‐water/100 ml sediment); to one mixture was added sodium acetate and to another methanol, to act as possible additional carbon sources, and all mixtures were allowed to stand at 25 °C in stoppered clear‐glass bottles in diffused light for a maximum of 315 days. Speciation and quantification of organotins was performed using aqueous phase boroethylation with simultaneous solvent extraction followed by gas chromatography with flame photometric detection. The atmosphere inside the bottles quickly became reducing with abundant presence of H2S, and after an induction period of about 112 days, and only in the reaction mixture containing methanol, methyltributyltin (MeBu3Sn) was observed in both sediment (maximum concentration 0.87 µgSn g?1) and overlying water (maximum concentration 6.0 µgSn l?1). The minimum conversion yield of TBT into MeBu3Sn was estimated to be 0.3%. MeBu3Sn has a significantly lower affinity for sediment than TBT and, therefore, is more mobile in the marine environment, possibly also migrating into the atmosphere to generate a hitherto unsuspected flux of organotin into that phase. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Analytical methods have been developed for the quantitative determination of Bu4Sn, Bu3Sn+, Bu2Sn2+, BuSn3+, Me3BuSn, Me2Bu2Sn, MeBu3Sn, MeBuSn2+, Me2BuSn+ and MeBu2Sn+ in water. Organotin compounds are extracted from water with tropolone at 0.1 % in n-pentane, derivatized with n-pentylmagnesium bromide and determined by gas chromatography with flame photometric detection or flame ionization detection. Absolute detection limits are 0.05-0.12 ng and 1.2-13 ng as tin, respectively. The method was applied to the analysis of spiked tap-water containing 0.3-1000 ng cm?3 of each of the organotin compounds.  相似文献   

3.
Open‐Chain and Cyclic As‐functionalized Stannylarsines: Synthesis, Reactions, and Structure tBu3SnAsH2 ( 1 ) reacts with MeLi to form the lithium compound tBu3SnAsHLi which reacts with tBu2SnCl2 to give the AsH‐functionalized bis(arsino)stannane tBu2Sn(AsHSntBu3)2 ( 2 ). Metallation of diarsadistannetane (tBu2SnAsH)2 ( 3 ) with two equivalents of tBuLi yields the dilithio compound (tBu2SnAsLi)2 which reacts with Me3SiCl or Me3SnCl to give the corresponding As,As′‐bis‐substituted diarsadistannetanes (tBu2SnAsSiMe3)2 ( 4 ) and (tBu2SnAsSnMe3)2 ( 5 ), respectively. The novel compounds are characterized by NMR (1H, 119Sn) and mass spectroscopy, ring compounds 4 and 5 further by X‐ray structure analysis. In the solid state both ring compounds contain molecules with planar tin‐arsenic rings and two trans‐configurated Me3Si‐ or Me3Sn‐ring substituents (space group P21/n (No. 14), Z = 2).  相似文献   

4.
Tri(n-butyl)tin (TBT) concentrations were determined in sediments and selected shellfish from Suva Harbour, Fiji. Sediments in the immediate vicinity of foreshore slipways and boatyards were exceedingly contaminated, with a maximum observed level of 38μ g?1 TBT-Sn. Concentrations were much lower in surficial sediments from commercial docks and yacht mooring areas, namely 16–83 ng g?1 TBT-Sn. Mangrove oysters (Crassostrea mordax), gastropods (Thais mancinella), and bivalves (Anadara scapha) were found to have accumulated TBT. Concentrations as high as 3180 ng g?1 TBT-Sn were found in mangrove oysters. With respect to the mangrove oyster, its widespread distribution, abundance and proclivity to accumulate TBT suggest that it is likely to be the best bioindicator species of TBT contamination in Fijian coastal waters.  相似文献   

5.
Hypercoordination of main‐group elements such as the heavier Group 14 elements (silicon, germanium, tin, and lead) usually requires strong electron‐withdrawing ligands and/or donating groups. Herein, we present the synthesis and characterization of two hexaaryltin(IV) dianions in form of their dilithium salts [Li2(thf)2{Sn(2‐pyMe)6}] (pyMe=C5H3N‐5‐Me) ( 2 ) and [Li2{Sn(2‐pyOtBu)6}] (pyOtBu=C5H3N‐6‐OtBu) ( 3 ). Both complexes are stable in the solid state and solution under inert conditions. Theoretical investigations of compound 2 reveal a significant valence 5s‐orbital contribution of the tin atom forming six strongly polarized tin–carbon bonds.  相似文献   

6.
Stannylation Experiments with NH-functional Aminoiminophosphoranes. Synthesis and Structure of the Tricyclic Stannaphosphazenes [Me2Sn(tBu2PN)NH]2 and [nBu2Sn(Ph2PN)2NH]2 Aminoiminophosphoranes tBu2P(NH)NH2 ( 1 ) and (H2NPPh2)N(Ph2PNH) ( 2 ) react with diaminostannanes R2Sn(NEt2)2 by cyclocondensation to give cyclostannaphosphazenes [Me2Sn(tBu2PN)NH]2 ( 3 ) and [R2Sn(Ph2PN)2NH]2 ( 4 a , b ) ( a : R = Me, b : R = nBu). With 2 and Me3SnNEt2 the ring compound Me2Sn(Ph2PN)2NSnMe3 ( 5 ) besides Me4Sn is formed by per-N-stannylation and Sn-methyl group transfer. The crystal structures of 3 and 4 b were determined by X-ray structure analysis. 3 forms a planar heterotricyclus containing three four-membered rings with two pentacoordinated tin atoms (space group P 1 (No. 2); Z = 1). 4 b consists of a tricyclic molecule with two puckered six-membered rings and one planar four membered tin-nitrogen ring with two pentacoordinated tin atoms (space group P 1 (No. 2); Z = 1).  相似文献   

7.
Complexes [Me2SnL2 ( I ), Me3SnL ( II ), Et2SnL2 ( III ), n‐Bu2SnL2 ( IV ), n‐Bu3SnL ( V ), n‐Oct2SnL2 ( VI )], where L is (E)‐3‐furanyl‐2‐phenyl‐2‐propenoate, have been synthesized and structurally characterized by vibrational and NMR (1H, 13C and 119Sn) spectroscopic techniques in combination with mass spectrometric and elemental analyses. The IR data indicate that in both the di‐ and triorganotin(IV) carboxylates the ligand moiety COO acts as a bidentate group in the solid state. The 119Sn NMR spectroscopic data, 1J[119Sn,13C] and 2J[119Sn, 1H], coupling constants show a four‐coordinated environment around the tin atom in triorganotin(IV) and five‐coordinated in diorganotin(IV) carboxylates in noncoordinating solvents. The complexes have been screened against bacteria, fungi, and brine‐shrimp larvae to assess their biological activity. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:612–620, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20488  相似文献   

8.
The spatial and temporal behaviours of the organotin compounds (OTCs) (butyl- and phenyltin) were investigated in the Manko and Okukubi protected estuarine ecosystems on Okinawa Island, Japan from February to October 2006. Butyltin compounds (BTCs) were frequently detected in all seasons, while phenyltin (PhTs) were found in winter and early spring. In Manko estuary, the total mean concentrations of BTCs and PhTs were 22.78?±?30.85, (mean?±?SD, n?=?53) and 0.08?±?0.27?ng(Sn)?L?1, respectively. In Okukubi estuary, BTCs and PhTs were 12.58?±?23.96 and 0.47?±?1.67 (n?=?55) ng(Sn)?L?1, respectively. The Manko sediments can be classified as lightly contaminated, while the Okukubi sediments were uncontaminated with tributyltin (TBT). The mean levels of TBT shown in Manko estuary exceeded the threshold level and represent an ecotoxicological risk to sensitive aquatic life. Generally, the present study reports the occurrence and continuous input of OTCs in the protected estuaries, even 16 years after legal restriction of TBT usage in coastal waters was implemented by the Japanese Environmental Authorities.  相似文献   

9.
Two series of organotin(IV) complexes with Sn–S bonds on the base of 2,6‐di‐tert‐butyl‐4‐mercaptophenol ( L 1 SH ) of formulae Me2Sn(L1S)2 ( 1 ); Et2Sn(L1S)2 ( 2 ); Bu2Sn(L1S)2 ( 3 ); Ph 2 Sn(L1S)2 ( 4 ); (L1)2Sn(L1S)2 ( 5 ); Me3Sn(L1S) ( 6 ); Ph3Sn(L1S) ( 7 ) (L1 = 3,5‐di‐tert‐butyl‐4‐hydroxyphenyl), together with the new ones [Me3SnCl(L2)] ( 8 ), [Me2SnCl2(L2)2] ( 9 ) ( L 2  = 2‐(N‐3,5‐di‐tert‐butyl‐4‐hydroxyphenyl)‐iminomethylphenol) were used to study their antioxidant and cytotoxic activity. Novel complexes 8 , 9 of MenSnCl4 ? n (n = 3, 2) with Schiff base were synthesized and characterized by 1H, 13C NMR, IR and elemental analysis. The crystal structures of compounds 8 and 9 were determined by X‐ray diffraction analysis. The distorted tetrahedral geometry around the Sn center in the monocrystals of 8 was revealed, the Schiff base is coordinated to the tin(IV) atom by electrostatic interaction and formation of short contact Sn–O 2.805 Å. In the case of complex 9 the distorted octahedron coordination of Sn atom is formed. The antioxidant activity of compounds as radical scavengers and reducing agents was proved spectrophotometrically in tests with stable radical DPPH, reduction of Cu2+ (CUPRAC method) and interaction with superoxide radical‐anion. Moreover, compounds have been screened for in vitro cytotoxicity on eight human cancer cell lines. A high activity against all cell lines with IC50 values 60–160 nM was determined for the triphenyltin complex 7 , while the introduction of Schiff base decreased the cytotoxicity of the complexes. The influence on mitochondrial potential and mitochondrial permeability for the compounds 8 and 9 has been studied. It is shown that studied complexes depolarize the mitochondria but don't influence the calcium‐induced mitochondrial permeability transition.  相似文献   

10.
The reaction of 4,4′‐bipy with dimethyltin(IV) chloride iso‐thiocyanate affords the one‐dimensional (1D) coordination polymer, [Me2Sn(NCS)Cl·(4,4′‐bipy)]n ( 1 ), whereas reaction of dimethyltin(IV) dichloride with sodium pyrazine‐2‐carboxylate in the presence of potassium iso‐thiocyanate affords the two‐dimensional (2D) coordination polymer, {[Me2Sn(C4H3N2COO)2]2 [Me2Sn(NCS)2]}n ( 2 ). Both coordination polymers were characterized by elemental analysis and infrared spectroscopy in addition to 1H and 13C NMR spectroscopy of the soluble coordination polymer ( 1 ). A single‐crystal structure determination showed that the asymmetric unit in 1 contains Me2Sn(NCS)Cl and 4,4′‐bipy moieties and a 1D infinite rigid chain structure forms through bridging of the 4,4′‐bipy ligand between tin atoms and the geometry around the tin atom is a distorted octahedral. Coordination polymer 2 contains two distinct tin atom geometrics in which one tin atom is seven coordinate, and the other is six coordinate. The two tin atom environments are best described as a pentagonal bipyramidal in the former and distorted octahedral in the latter where the carboxylate groups bridge the two tin atoms and construct a 2D‐coordination polymer. The 119Sn NMR spectroscopy indicates the octahedral geometry of 1 retains in solution. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:699–706, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/.20736  相似文献   

11.
Dilithiated di(stannyl)oligosilanes (tBu2Sn(Li)– (SiMe2)n–Sn(Li)tBu2; 4 , n = 2; 5 , n = 3) were synthesized by the reaction of lithium diisopropylamide (LDA) with the α,ω‐hydrido tin substituted oligosilanes (tBu2Sn(H)– (SiMe2)n–Sn(H)tBu2; 1 , n = 2; 2 , n = 3). Surprisingly, the reaction of 1 and 3 (tBu2Sn(H)–(SiMe2)4–Sn(H)tBu2) with LDA resulted not in the formation of the lithiated compound, but what one can find is the formation of the 5,5‐ditert.butyl‐octamethyl‐1,2,3,4‐tetrasila‐5‐stannacyclopentane ( 8 ) (n = 4) in addition to the expected product 4 (n = 4) and the 3,3,6,6‐tetratert.butyl‐octamethyl‐1,2,4,5‐tetrasila‐3,6‐distannacyclohexane ( 7 ) (n = 3). Reactions of 4 and 5 with dimethyl and diphenyldichlorosilanes yielding monocyclic Si–Sn derivatives ( 9 – 11 ) are also discussed. The solid‐state structures of 7 and 11 were determined by X‐ray crystallography.  相似文献   

12.
Herein, we report the syntheses of silicon‐ and tin‐containing open‐chain and eight‐membered‐ring compounds Me2Si(CH2SnMe2X)2 ( 2 , X=Me; 3 , X=Cl; 4 , X=F), CH2(SnMe2CH2I)2 ( 7 ), CH2(SnMe2CH2Cl)2 ( 8 ), cyclo‐Me2Sn(CH2SnMe2CH2)2SiMe2 ( 6 ), cyclo‐(Me2SnCH2)4 ( 9 ), cyclo‐Me(2?n)XnSn(CH2SiMe2CH2)2SnXnMe(2?n) ( 5 , n=0; 10 , n = 1, X= Cl; 11 , n=1, X= F; 12 , n=2, X= Cl), and the chloride and fluoride complexes NEt4[cyclo‐ Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?F] ( 13 ), PPh4[cyclo‐Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?Cl] ( 14 ), NEt4[cyclo‐Me(F)Sn(CH2SiMe2CH2)2Sn(F)Me?F] ( 15 ), [NEt4]2[cyclo‐Cl2Sn(CH2SiMe2CH2)2SnCl2?2 Cl] ( 16 ), M[Me2Si(CH2Sn(Cl)Me2)2?Cl] ( 17 a , M=PPh4; 17 b , M=NEt4), NEt4[Me2Si(CH2Sn(Cl)Me2)2?F] ( 18 ), NEt4[Me2Si(CH2Sn(F)Me2)2?F] ( 19 ), and PPh4[Me2Si(CH2Sn(Cl)Me2)2?Br] ( 20 ). The compounds were characterised by electrospray mass‐spectrometric, IR and 1H, 13C, 19F, 29Si, and 119Sn NMR spectroscopic analysis, and, except for 15 and 18 , single‐crystal X‐ray diffraction studies.  相似文献   

13.
The preparation and structures of 2, 2′‐dihydroxyazobenzenato‐dibutyl‐tin [Bu2SnL] and 2, 2′‐dihydroxyazobenzenato‐dimethyl‐tin [Me2SnL] are described. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and UV/VIS spectra. The crystal structures were determined by X‐ray diffraction on single crystals. [Bu2SnL]: monoclinic, space group P21/c, cell constants at 208 K: a = 860.73(5), b = 973, 51(18), c = 2340.0(3) pm, β = 93.615(11)°; R1 = 0.0546. [Me2SnL]: orthorhombic, space group Pbcn, cell constants at 208 K: a = 1914.6(4), b = 1041.3(3), c = 1323.27(14) pm; R1 = 0.0529.  相似文献   

14.
Reaction of dithioacid (ArCS2CH2CO2H, Ar = phenyl, 2‐furyl or 2‐thienyl) with nBu2SnO gives monomeric (ArCS2CH2CO2)2Sn(Bun)2 in a 2:1 molar ratio, and dimeric {[(ArCS2CH2CO2)Sn(Bun)2]2O}2 in a 1:1 molar ratio, respectively, which have been characterized by IR, NMR (1H, 13C and 119Sn) spectra and elemental analyses. X‐ray crystal structure analyses indicate that the compound [(C4H3S)CS2CH2CO2]2Sn(Bun)2 is monomeric with the tin atom occupying a skew‐trapezoidal bipyramidal geometry. In addition, this compound forms a three‐dimensional structure through the weak intermolecular SS and SnO interactions. Compound {[((C4H3S)CS2CH2CO2)Sn(Bun)2]2O}2 is a centrosymmetric dimer with a cyclic Sn2O2 unit, in which the coordination modes of the two crystallographically unique carboxylic ligands are different. One acts as monodentate ligand by the carboxylate oxygen atom, the other bridges two tin atoms via only one carboxylate oxygen atom. Furthermore, each tin atom in this compound locates a distorted trigonal bipyramidal geometry. Biological activities of these organotin compounds show that they have hardly acaricidal activity, but display certain activities on fungi. In mononuclear tin compounds, the inhibition percentage of [(C4H3S)CS2CH2CO2]2Sn(Bun)2 in vitro for Alternaria solani and Physolospora piricola is 57.1% and 43.9%, respectively, while in dimers {[((C4H3O)CS2CH2CO2)Sn(Bun)2]2O}2 shows high inhibition percentage for Gibbereila zeae (52.6%) and Physolospora piricola (50.0%), respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
A new series of diorganotin complexes of the type R2SnL (L1: N‐(2‐hydroxy‐5‐chlorophenyl)‐ 3‐ethoxysalicylideneimine, R = Me, (Me2SnL1), R = n‐Bu, (n‐Bu2SnL1), R = Ph, (Ph2SnL1), L2: N‐(2‐hydroxy‐4‐nitro‐5‐chlorophenyl)‐3‐ethoxysalicylideneimine, R = Ph, Ph2SnL2, L3: N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐methoxysalicylideneimine, R = Me, (Me2SnL3), R = n‐Bu, (n‐Bu2SnL3), L4: N‐(2‐hydroxy‐4‐nitrophenyl)‐3‐ethoxysalicylideneimine, R = Me, (Me2SnL4), R = n‐Bu, (n‐Bu2SnL4)) were synthesized and characterized by elemental analysis, infrared (IR), 1H, and 13C NMR mass spectroscopic techniques, and electrochemical measurements. Ph2SnL1 and Ph2SnL2 were also characterized by X‐ray diffraction analysis and were found to show a fivefold C2NO2 coordination geometry nearly halfway between a trigonal bipyramidal and distorted square pyramidal arrangement. The C Sn C angles in the complexes were calculated using Lockhart's equations with the 1J(117/119Sn‐13C) and 2J(117/119Sn‐1H) values from the 1H NMR and 13C NMR spectra. Biocidal activity tests against several micro‐organisms and some fungi indicate that all the complexes are mildly active against Gram (+) bacteria and the fungi, A. niger and inactive against Gram (−) bacteria. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:373–385, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20628  相似文献   

16.
Reactions of di‐n‐butyltin(IV) oxide with 4′/2′‐nitrobiphenyl‐2‐carboxylic acids in 1 : 1 and 1 : 2 stoichiometry yield complexes [{(n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)}2O]2 ( 1 and 2 ) and (n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)2 ( 3 and 4 ) respectively. These compounds were characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectroscopy. The IR spectra of these compounds indicate the presence of anisobidentate carboxylate groups and non‐linear C? Sn? C bonds. From the chemical shifts δ (119Sn) and the coupling constants 1J(13C, 119Sn), the coordination number of the tin atom and the geometry of its coordination sphere have been suggested. [{(n‐C4H9)2Sn(OCOC12H8NO2?4′)}2O]2 ( 1 ) exhibits a dimeric structure containing distannoxane units with two types of tin atom with essentially identical geometry. To a first approximation, the tin atoms appear to be pentacoordinated with distorted trigonal bipyramidal geometry. However, each type of tin atom is further subjected to a sixth weaker interaction and may be described as having a capped trigonal bipyramidal structure. The diffraction study of the complex (n‐C4H9)2Sn(OCOC12H8NO2?4′)2 ( 3 ) shows a six–coordinate tin in a distorted octahedral frame containing bidentate asymmetric chelating carboxylate groups, with the n‐Bu groups trans to each other. The n‐Bu? Sn? n‐Bu angle is 152.8° and the Sn? O distances are 2.108(4) and 2.493(5) Å. The oxygen atom of the nitro group of the ligand does not participate in bonding to the tin atom in 1 and 3 . Crystals of 1 are triclinic with space group P1 and of that of 3 have orthorhombic space group Pnna. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The mass spectra of (Me3Sn)nCH4?n, where n varies from 1 to 4, (Me3Sn)2CClX, where X equals H, Cl, Br or I, together with some tetraalkyltin compounds and Me3SnCCl3, are presented. Comparisons with mass spectra of the silicon analogs1 show a large number of similarities, including the appearance of allylic ions which require Group IV metal to carbon π-bonding. Multiple rearrangements are observed with the halogenated tin compounds which bring the α-halogen into direct bonding with the tin atom.  相似文献   

18.
The complexes Me2SnL2 ( I ), Me3SnL ( II ), Et2SnL2 ( III ), n‐Bu2SnL2 ( IV ), n‐Bu3SnL ( V ), n‐Oct2SnL2 ( VI ), Bz2SnL2 ( VII ), and Ph3SnL ( VIII ), where “L” is ( E )‐3‐(3‐fluorophenyl)‐2‐phenyl‐2‐propenoate, have been prepared and structurally characterized by means of elemental analysis, infrared, mass, and multinuclear (1H, 13C, 119Sn) NMR spectral techniques. The spectroscopic results showed that the geometry around the Sn atom in triorganotin(IV) derivatives is four‐coordinated in noncoordinating solvent and behaves as five‐coordinated linear polymers with bridging carboxylate groups or five‐coordinated monomers, both acquiring trans‐R3SnO2 geometry for Sn in the solid state. While all the diorganotin(IV) derivatives may acquire trigonal bipyramidal structures in solution due to collapse of the Sn←OCO interaction and octahedral geometries in the solid state, which have been confirmed by the X‐ray crystallographic data of the compound III . The crystal structure of Et2SnL2 ( III ) has been determined by X‐ray crystallography and is found skew‐trapezoidal bipyramidal, which substantiates that the ligand acts as an anisobidentate chelating agent, thus rendering the Sn atom six coordinated. The crystal is monoclinic with space group C21/n. All the investigated compounds have also been screened for biocidal and cytotoxicity data. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:420–432, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20243  相似文献   

19.
Proton NMR data for the Group III methyl derivatives, MMe3 and LiMMe4 are compared with NMR data for the novel tin—Group III-metal bonded species, Li[Me3SnMMe3] (M  Al, Ga, In and Tl) and for Li[(Me3Sn)n-TlMe4?n] (n = 0 to 4), reported here for the first time.The presence of tinmetal bonding in these derivatives is established by the observed tin-across-metal coupling constants and for the thallium derivatives by the additional observation of thallium-across-tin coupling.The variation in the magnitudes of 2J(SnCH), 2J(TlCH), 3J(SnMCH) and 3J(TlSnCH) are reported as a function of M and as a function of the number of Me3Sn groups bond to thallium in the [(Me3Sn)nTIME4?n]?anions. Proposals concerning the factors governing the changes in these coupling constants and the chemical shifts are presented.  相似文献   

20.
The diorganotin(IV) complexes of methyl 2‐{4‐hydroxy‐3‐[(2‐hydroxy‐phenylimino)‐methyl]‐phenylazo}‐benzoate (H2L) were obtained by the reaction of ortho‐aminophenol, R2SnO (R = Me, nBu, or Ph) and methyl 2‐[(E)‐(3‐formyl‐4‐hydroxy)diazenyl]benzoate (H2PL2) in ethanol, which led to diorganotin(IV) compounds of composition [Me2SnL]2 ( 1 ), nBu2SnL ( 2 ), and Ph2SnL ( 3 ) in good yield. The 1H, 13C, and 119Sn NMR, IR, the mass spectrometry along with elemental analyses allowed establishing the structure of ligand (H2L) and compounds 1–3 . In all the three cases, 119Sn chemical shifts are indicators of five‐coordinated Sn atoms in a solution state. The crystal structures of ligand H2L and complexes 1 and 2 were determined by a single crystal X‐ray diffraction study. In the solid state, the ligand H2L exists as a keto‐enamine tautomeric form. The molecular structure of complex 1 in the solid state shows a distorted octahedral geometry around a tin atom due to additional coordination with an oxygen atom from a neighboring molecule leading to a four‐membered ring with Sn‐O···Sn‐O intermolecular coordination, leading to a dimeric species. On the other hand, complex 2 is a monomer with trigonal bipyramidal geometry surrounding the tin atom. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:457–465, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21037  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号