首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
胡安东  周顺桂  叶捷 《化学进展》2021,33(11):2103-2115
半人工光合系统通过利用人工光合系统与自然光合系统关键功能组分的协同效应以实现太阳能-化学能的转化。生物杂化体介导的半人工光合系统(biohybrid mediated semi-artificial photosynthetic system, BMSAPS)创新性地耦合了光敏剂优异的光捕获特性及生物催化剂高效的催化能力,从而利用太阳能高效驱动特定的化学转化过程。强化光敏剂与生物催化剂微界面间电子的产生、传输及利用是提高BMSAPS性能的关键。本文从BMSAPS的基本原理出发,分析了BMSAPS构建的关键科学问题及研究现状,阐述了该系统光生电子传递的相关机制及研究手段,总结了其在可再生能源转化、二氧化碳减排等方面的研究进展,并就未来的研究方向提出展望。本文有助于加深对BMSAPS的认识,从而为进一步优化其在能源生产和环境修复领域的应用提供理论基础和技术支撑。  相似文献   

2.
在进化的过程中,生物体学会了利用材料来改造自身以适应环境的变化。自然界中的一些生物体可以通过生物矿化合成无机纳米材料为自己提供保护或其他特殊功能。但是自然界中还有部分生物体不具备生物矿化功能,受到自然界生物体利用纳米材料的启发,科学家们开始尝试通过人工赋予生物体纳米材料来对其进行改造。本文就基于生物-材料界面复合技术的纳米材料对生物体的改造,依次从调控机制、改造方法、功能应用等方面做了系统的阐述,重点介绍了通过仿生矿化对生物体进行纳米改造的研究进展,对仿生无机纳米材料改造生物体的领域现状做了分析和总结,并且对该领域的发展前景进行了展望。  相似文献   

3.
人工光合作用   总被引:1,自引:0,他引:1  
李晓慧  范同祥 《化学进展》2011,23(9):1841-1853
人工光合作用是模拟自然界的光合作用过程,设计制备人工光催化体系,以达到高效吸收、转化和储存太阳能的目的。本文从自然界的光合作用过程出发,综述了国内外人工光合作用的最新研究进展。从基本原理、常用体系和能量转换效率等方面入手,系统介绍了两种人工光合作用体系:模拟自然光合作用系统的超分子和无机半导体光催化体系。在此基础上,分析当前研究中存在的问题,并提出改进能量转换效率的可能对策,最后评述了人工光合作用的发展趋势和应用前景。  相似文献   

4.
随着化石燃料大量使用带来的气候变化和环境污染问题日趋严重,寻找清洁高效的可再生能源用做传统化石燃料的替代品,已经成为当前的研究热点。光驱动的水分解反应被认为是太阳能制氢的可行途径。水的全分解包括两个半反应-水的氧化和质子还原。其中水的氧化反应是一个涉及四个电子和四个质子转移的复杂过程,需要很高的活化能,被认为是全分解水反应的瓶颈步骤。因此,开发高效、稳定、廉价丰产的水氧化催化剂是人工光合作用突破的关键因素。立方烷具有类似自然界光合作用酶光系统II(PSII)活性中心Mn_4CaO_5簇的结构,世界各国的科学家受自然界光合作用的启发,开发出了许多基于过渡金属的立方烷结构的催化剂,常见的有锰、钴和铜等立方烷催化剂。本文简要地综述了近年来立方烷分子催化剂在光催化水氧化中的研究进展。首先介绍了立方烷基光催化水氧化反应历程,继而详细介绍了基于有机配体的立方烷配合物和全无机的多金属氧酸盐立方烷水氧化催化剂,其次是半导体(BiVO4或聚合的氮化碳(PCN))为捕光材料复合立方烷分子催化剂的水氧化体系最新研究进展。最后总结并展望了该领域所面临的挑战及其前景。  相似文献   

5.
本文系统综述了O2氧化剂用于环己烷催化氧化体系的研究进展,包括金属配合物催化、金属纳米粒子催化、金属氧化物粒子催化、分子筛催化、碳材料催化、光促进催化、杂多酸催化、金属-有机骨架材料催化等。本文认为研究、开发以O2为氧化剂,高活性高选择性的非均相环己烷催化氧化体系将成为今后环己烷催化氧化研究的主要方向,尤其是多金属甚至多元素复合体系。本综述不仅对开发高催化活性高选择性的环己烷催化氧化体系,改进目前工业上的环己醇环己酮制备工艺具有重要的参考价值,而且还对其他烃类C-H键和C-C键高效催化氧化体系甚至其他氧化体系的研究与开发也具有重要的参考价值。  相似文献   

6.
无机多孔材料因其具有特殊的物化性能在化工、能源、环保等相关领域被广泛应用。本文总结了无机多孔材料的当前研究进展,详细介绍了微孔、介孔、大孔材料和大孔-介孔、大孔-微孔、介孔-微孔以及大孔-介孔-微孔等复合孔材料的制备方法,并介绍了无机多孔材料在室内、外等环保催化领域的应用,特别介绍了多孔材料对于消除移动源污染的应用。最后,对当前无机多孔材料在制备方面存在的问题进行了总结,并对今后无机多孔材料的制备方法和研究方向进行了展望。  相似文献   

7.
系统地介绍了有序介孔硅胶及其复合材料的研究进展。重点评述了颗粒状无机介孔硅胶材料、颗粒状有机-无机复合介孔硅胶材料、手性介孔硅胶材料和整块介孔硅胶材料在用作液相色谱固定相方面的最新进展。对硅基有序介孔材料制备方面存在的问题进行了分析,并就该领域今后的发展趋势做了展望。  相似文献   

8.
地球上的能量主要来源于太阳光辐射,绿色植物及微生物通过光合作用吸收光能,经过光电催化过程和多酶催化过程,将CO_2转化为碳水化合物.基于仿生思想,模拟光合作用中酶光协同催化过程,构建酶光耦合系统,利用酶催化过程进行CO_2转化,利用光催化过程提供能量及电子,协调优化酶催化和光催化过程,实现CO_2高效绿色转化,可有效调节因化石燃料过度使用引起的碳循环失衡.酶光耦合催化系统构建过程简便,催化产物种类可控,为生物催化在化工、能源、环境等领域的应用提供了范例.本文从单酶催化和多酶催化角度分别介绍了两类酶催化系统转化CO_2的研究现状,从电子传递角度介绍了辅酶依赖型和辅酶非依赖型酶光耦合催化系统的研究进展.最后,对本领域发展现状和趋势进行了简要总结和展望.  相似文献   

9.
从热力学角度研究光合作用效率是理解光合作用机制、实现人工光合过程的重要方法。本文概述了对光合作用进行热力学能量衡算、熵分析和有效能分析的研究进展,着重介绍了光合作用有效能效率的计算模型及其发展。同时,本文还介绍了人工光合作用的部分最新研究成果。  相似文献   

10.
曹宇飞  戈钧 《催化学报》2021,42(10):1625-1633
工业生物催化面临两大重要挑战,一是可工业应用的酶催化反应类型仍然比较有限,远少于化学催化剂,因此需要拓展酶催化的反应类型;二是酶在苛刻的工业催化反应条件下尤其是在高温、有机溶剂、不适宜的pH等环境下稳定性较差,因此需要提高工业酶催化剂的稳定性.研究者已经开发了很多方法,以解决这两方面难题,例如酶的定向进化、定点突变、酶的计算机从头设计和构建人工金属酶等.本文系统介绍了本课题组开发的酶复合催化剂原位合成方法及其生物催化应用,期望为解决工业生物催化的上述挑战提供新思路.原位合成是构建酶-无机晶体复合催化剂的一种简便、高效、普适的方法.酶-无机晶体复合物中,限域包埋使酶具有高于常规固定化酶的催化活性和稳定性.该方法可以简便拓展至其它多种类型的无机晶体材料,显著提高酶的稳定性.无机晶体的限域包埋对酶分子结构和性能有着重要影响,通过理性设计复合催化剂的结构,可实现对酶的活性、稳定性以及多酶反应级联效率的有效调控.本课题组采用分子模拟和实验相结合的方法阐释了多酶-无机晶体复合催化剂所驱动的级联反应效率提高的关键因素.通过调控原位合成中金属离子和有机配体的浓度,实现了酶分子在缺陷型甚至无定形载体中的包埋.在此基础上,深入探讨了缺陷对酶分子结构和催化活性的调控机制,为酶复合催化剂的理性设计提供了依据.同样基于原位合成方法,本课题组构建了酶-金属团簇复合催化剂,实现了温和条件下酶催化和金属催化的高效耦合和协同.以脂肪酶-钯团簇复合催化剂为例,阐明了酶-金属团簇复合催化剂中二者相互作用对酶分子结构和活性以及金属催化活性的影响机制,为酶催化和金属催化相融合的研究提供了重要基础.我们对这一领域存在的挑战和未来重要的研究方向也进行了讨论,希望本文可以从催化剂工程角度为高效酶催化剂的设计以及生物催化应用领域的拓展提供新思路,推动该领域发展.  相似文献   

11.
Integrating natural and artificial photosynthetic platforms is an important approach to developing solar‐driven hybrid systems with exceptional function over the individual components. A natural–artificial photosynthetic hybrid platform is formed by wiring photosystem II (PSII) and a platinum‐decorated silicon photoelectrochemical (PEC) cell in a tandem manner based on a photocatalytic‐PEC Z‐scheme design. Although the individual components cannot achieve overall water splitting, the hybrid platform demonstrated the capability of unassisted solar‐driven overall water splitting. Moreover, H2 and O2 evolution can be separated in this system, which is ascribed to the functionality afforded by the unconventional Z‐scheme design. Furthermore, the tandem configuration and the spatial separation between PSII and artificial components provide more opportunities to develop efficient natural–artificial hybrid photosynthesis systems.  相似文献   

12.
Interest in the application of semiconductors toward the photocatalytic generation of solar fuels, including hydrogen from water-splitting and hydrocarbons from the reduction of carbon dioxide, remains strong due to concerns over the continued emission of greenhouse gases as well as other environmental impacts from the use of fossil fuels. While the efficiency and durability of such systems will depend heavily on the types of the semiconductors, co-catalysts, and mediators employed, the dimensionality of the semiconductors employed can also have a significant impact. Recognizing the broad nature of this field and the many recent advances in it, this review focuses on the emerging approaches from 0-dimensional (0D) to 3-dimensional (3D) semiconductor photocatalysts towards efficient solar fuels generation. We place particular emphasis on systems that are “semi-artificial”, that is, hybrid systems that integrate naturally occurring enzymes or whole cells with semiconductor components that harvest light energy. The semiconductors in these systems must have suitable interfacial properties for immobilization of enzymes to be effective photocatalysts. These requirements are particularly sensitive to surface structures and morphology, making the semiconductor dimensionality a critical factor. In addition to providing an overview of advances towards designing 3D architecture in semi-artificial photosynthetic field, we also present recent advances in fabrication strategies for 3D inorganic photocatalysts.  相似文献   

13.
The functional core of oxygenic photosynthesis is in charge of catalytic water oxidation by a multi‐redox MnIII/MnIV manifold that evolves through five electronic states (Si , where i=0–4). The synthetic model system of this catalytic cycle and of its S0→S4 intermediates is the expected turning point for artificial photosynthesis. The tetramanganese‐substituted tungstosilicate [MnIII3MnIVO3(CH3COO)3(A‐α‐SiW9O34)]6? (Mn4POM) offers an unprecedented mimicry of the natural system in its reduced S0 state; it features a hybrid organic–inorganic coordination sphere and is anchored on a polyoxotungstate. Evidence for its photosynthetic properties when combined with [Ru(bpy)3]2+ and S2O82? is obtained by nanosecond laser flash photolysis; its S0→S1 transition within milliseconds and multiple‐hole‐accumulating properties were studied. Photocatalytic oxygen evolution is achieved in a buffered medium (pH 5) with a quantum efficiency of 1.7 %.  相似文献   

14.
Inspired by the photosynthesis of green plants, various artificial photosynthetic systems have been proposed to solve the energy shortage and environmental problems. Water photosplitting, carbon dioxide photoreduction, and nitrogen photofixation are the main systems that are used to produce solar fuels such as hydrogen, methane, or ammonia. Although conducting artificial photosynthesis using man-made semiconducting materials is an ideal and potential approach to obtain solar energy, constructing an efficient photosynthetic system capable of producing solar fuels at a scale and cost that can compete with fossil fuels remains challenging. Therefore, exploiting the efficient and low-cost photocatalysts is crucial for boosting the three main photocatalytic processes (light-harvesting, surface/interface catalytic reactions, and charge generation and separation) of artificial photosynthetic systems. Among the various photocatalysts developed, the Z-scheme heterojunction composite system can increase the light-harvesting ability and remarkably suppress charge carrier recombination; it can also promote surface/interface catalytic reactions by preserving the strong reductive/oxidative capacity of the photoexcited electrons/holes, and therefore, it has attracted considerable attention. The continuing progress of Z-scheme nanostructured heterojunctions, which convert solar energy into chemical energy through photocatalytic processes, has witnessed the importance of these heterojunctions in further improving the overall efficiency of photocatalytic reaction systems for producing solar fuels. This review summarizes the progress of Z-scheme heterojunctions as photocatalysts and the advantages of using the direct Z-scheme heterojunctions over the traditional type Ⅱ, all-solid-state Z-schemel, and liquid-phase Z-scheme ones. The basic principle and corresponding mechanism of the two-step excitation are illustrated. In particular, applications of various types of Z-scheme nanostructured materials (inorganic, organic, and inorganic-organic hybrid materials) in photocatalytic energy conversion and different controlling/engineering strategies (such as extending the spectral absorption region, promoting charge transfer/separation and surface chemical modification) for enhancing the photocatalytic efficiency in the last five years are highlighted. Additionally, characterization methods (such as sacrificial reagent experiment, metal loading, radical trapping testing, in situ X-ray photoelectron spectroscopy, photocatalytic reduction experiments, Kelvin probe force microscopy, surface photovoltage spectroscopy, transient absorption spectroscopy, and theoretical calculation) of the Z-scheme photocatalytic mechanism, and the assessment criteria and methods of the photocatalytic performance are discussed. Finally, the challenges associated with Z-scheme heterojunctions and the possible growing trend are presented. We believe that this review will provide a new understanding of the breakthrough direction of photocatalytic performance and provide guidance for designing and constructing novel Z-scheme photocatalysts.   相似文献   

15.
The development of artificial photosynthetic systems for water splitting and CO2 reduction on a large scale for practical applications is the ultimate goal towards worldwide sustainability. This Concept highlights the state‐of‐the‐art research trends of artificial photosynthesis concepts and designs from some new perspectives. Particularly, it is focused on five important aspects for the design of promising artificial photosynthetic systems: 1) catalyst development, 2) architecture design, 3) device buildup 4) mechanism exploration, and 5) theoretical investigations. Some typical progress and challenges, the most significant milestones achieved to date, as well as possible future directions are illustrated and discussed. This Concept article presents a selection of new developments to highlight new trends and possibilities, main barriers, or challenges; with this, we hope to inspire more advances in the field of artificial photosynthesis.  相似文献   

16.
One of the most fundamental processes of the natural photosynthetic reaction sequence is the light-driven oxidation of water to molecular oxygen. In vivo, this reaction takes place in the large protein ensemble Photosystem II, where a μ-oxido-Mn(4)Ca- cluster, the oxygen-evolving-complex (OEC), has been identified as the catalytic site for the four-electron/four-proton redox reaction of water oxidation. This Perspective presents recent progress for three strategies which have been followed to prepare functional synthetic analogues of the OEC: (1) the synthesis of dinuclear manganese complexes designed to act as water-oxidation catalysts in homogeneous solution, (2) heterogeneous catalysts in the form of clay hybrids of such Mn(2)-complexes and (3) the preparation of manganese oxide particles of different compositions and morphologies. We discuss the key observations from the studies of such synthetic manganese systems in order to shed light upon the catalytic mechanism of natural water oxidation. Additionally, it is shown how research in this field has recently been motivated more and more by the prospect of finding efficient, robust and affordable catalysts for light-driven water oxidation, a key reaction of artificial photosynthesis. As manganese is an abundant and non-toxic element, manganese compounds are very promising candidates for the extraction of reduction equivalents from water. These electrons could consecutively be fed into the synthesis of "solar fuels" such as hydrogen or methanol.  相似文献   

17.
《Comptes Rendus Chimie》2017,20(3):296-313
Presently, the world is experiencing an unprecedented crisis associated with the CO2 produced by the use of fossil fuels to power our economies. As evidenced by the increasing levels in the atmosphere, the reduction of CO2 to biomass by photosynthesis cannot keep pace with production with the result that nature has lost control of the global carbon cycle. In order to restore control of the global carbon cycle to solar-driven processes, highly efficient artificial photosynthesis can augment photosynthesis in specific ways and places. The increased efficiency of artificial photosynthesis can provide both renewable carbon-based fuels and lower net atmospheric levels of CO2, which will preserve land and support the ecosystem services upon which all life on Earth depends. The development of artificial photosynthetic antennas and reaction centers contributes to the understanding of natural photosynthesis and to the knowledge base necessary for the development of future scalable technologies. This review focuses on the design and study of molecular and hybrid molecular-semiconductor nanoparticle based systems, all of which are inspired by functions found in photosynthesis and some of which are inspired by components of photosynthesis. In addition to constructs illustrating energy transfer, photoinduced electron transfer, charge shift reactions and proton coupled electron transfer, our review covers systems that produce proton motive force.  相似文献   

18.
Degradation kinetics of organic-inorganic hybrid materials based on epoxy resin were investigated by thermogravimetric analysis (TGA). The hybrid materials were prepared from diglycidyl ether of bisphenol A (DGEBA) and 3-glycidyloxypropyltrimethoxysilane (GLYMO) polymerised simultaneously by poly(oxypropylene)diamine (Jeffamine D230). Nanometric level of homogeneity in the hybrids was verified by electron microscopy. Energy of activation of degradation for the hybrids with varying inorganic content, as well as for the unmodified epoxy-amine system, was determined by the isoconversional Kissinger-Akahira-Sunose method, and was found to be significantly higher for the hybrid materials than for the unmodified epoxy-amine system. The degradation process was described by empirical kinetic models. The results indicated that presence of the inorganic network influences the mechanism of degradation of organic phase. Greater thermal stability of hybrid materials was confirmed by other parameters obtained from TGA curves.  相似文献   

19.
Light‐harvesting hybrids have gained much importance as they are considered as potential mimics for photosynthetic systems. In this Concept article we introduce the design concepts involved in the building up of light‐harvesting hybrids; these resemble the well‐studied organic‐based assemblies for energy transfer. We have structured this article into three parts based on the strategies adopted in the synthesis of hybrid assemblies, as covalent, semicovalent, and noncovalent procedures. Furthermore, the properties and structural features of the hybrids and analogous organic assemblies are compared. We also emphasize the challenges involved in the processability of these hybrid materials for device applications and present our views and results to address this issue through the design of soft‐hybrids by a solution‐state, noncovalent, self‐assembly process.  相似文献   

20.
The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号