首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic CO2 hydrogenation to methanol is a promising route to mitigate the negative effects of anthropogenic CO2. To develop an efficient Pd/ZnO catalyst, increasing the contact between Pd and ZnO is of the utmost importance, because naked Pd favors CO production via the reverse water-gas shift path. Here, we have utilized a ZnO@ZIF-8 core-shell structure to synthesize Pd/ZnO catalysts via Pd immobilization and calcination. The merit of this method is that the porous outer layer can offer abundant guest rooms for Pd, ensuring intimate contact between Pd and the post-generated ZnO. The synthesized Pd/ZnO catalysts (PZZ8-T, T denotes the temperature of calcination in degree Celsius) is compared with a ZnO nanorod-immobilized Pd catalyst (PZ). When the catalytic reaction was performed at lower reaction temperatures (250, 270, and 290 ℃), the highest methanol space time yield (STY) and highest STY per Pd achieved by PZ at 290 ℃ were 0.465 g gcat-1 h-1 and 13.0 g gPd-1 h-1, respectively. However, all the PZZ8-T catalysts exhibited methanol selectivity values greater than 67.0% at 290 ℃, in sharp contrast to a methanol selectivity value of 32.8% for PZ at the same temperature. Thus, we performed additional investigations of the PZZ8-T catalysts at 310 and 360 ℃, which are unusually high temperatures for CO2 hydrogenation to methanol because the required endothermic reaction is expected to be severely inhibited at such high temperatures. Interestingly, the PZZ8-T catalysts were observed to achieve a methanol selectivity value of approximately 60% at 310 ℃, and PZZ8-400 was observed to maintain a methanol selectivity value of 51.9% even at a temperature of 360 ℃. Thus, PZZ8-400 attains the highest methanol STY of 0.571 g gcat-1 h-1at 310 ℃. For a better understanding of the structure-performance relationship, we characterized the catalysts using different techniques, focusing especially on the surface properties. X-ray photoelectron spectroscopy (XPS) results indicated a linear relationship between the methanol selectivity and the surface PdZn : Pd ratio, proving that the surface PdZn phase is the active site for CO2 hydrogenation to methanol. Furthermore, analysis of the XPS O 1s spectrum together with the electronic paramagnetic resonance results revealed that both, the oxygen vacancy as well as the ZnO polar surface, played important roles in CO2 activation. Chemisorption techniques provided further quantitative and qualitative information regarding the Pd-ZnO interface that is closely related to the CO2 conversion rate. We believe that our results can provide insight into the catalytic reaction of CO2 hydrogenation from the perspective of surface science. In addition, this work is an illustrative example of the use of novel chemical structures in the fabrication of superior catalysts using a traditional formula.  相似文献   

2.
CO_2引起的气候变化已引起全世界的关注,但同时CO_2也是一种可持续的碳资源.将CO_2转化为高附加值的燃料或化学品不仅可以解决CO_2的问题,还可变废为宝得到有用的化学品.CO_2加氢制甲醇是实现这一过程的理想选择之一,因为甲醇不仅是很好的燃料,还可转化得到烯烃、芳烃等高附加值化学品,需要强调的是整个过程所需的氢气是利用太阳能等可再生能源通过光催化、光电催化或电解水制氢得到.使用煤或天然气经合成气用CuZnOAl_2O_3催化剂合成甲醇已工业化50年左右,甲醇选择性可达99%,但该催化剂应用于CO_2加氢制甲醇时,较强的逆水煤气变换副反应致使甲醇选择性只有60%左右,另外,反应生成的水会加速Cu基催化剂的失活.因此,开发新型高选择性催化体系显得尤为必要,世界上很多科学家展开了新型催化剂的研发,如Cu/ZnO/ZrO_2,Pd/ZnO,"georgeite"Cu,Cu(Au)/CeO_x/TiO_2,Ni-Ga,MnO_x/Co_3O_4催化剂等,但这几类催化剂体系上甲醇选择性都不超过60%,CO_2加氢制甲醇选择性低的问题一直没有解决.近期,中国科学院大连化学物理研究所李灿院士课题组开发了一种不同于传统金属催化剂的双金属固溶体氧化物催化剂ZnO-ZrCO_2,在近似工业条件下(5.0 MPa,24000 mL/(g h),H_2/CO_2=3/1~4/1,320~315 ℃),当CO_2单程转化率超过10%时,甲醇选择性仍保持在90%左右,是目前同类研究中综合水平最好的结果.研究表明,该催化剂的固溶体结构特征提供了双活性中心反应位点,Zn和Zr,其中H_2和CO_2分别在Zn位和原子相邻的Zr位上活化,在CO_2加氢过程中表现出了协同作用,从而可高选择性地生成甲醇.原位红外-质谱同位素实验及DFT理论计算结果表明,表面HCOO*和H_3CO*是反应主要的活性中间物种.该催化剂反应连续运行500 h无失活现象,还具有极好的耐烧结稳定性和一定的抗硫能力,表现出了良好的工业应用前景.传统甲醇合成Cu基催化剂要求原料气含硫低于0.5 ppm,而该催化剂的抗硫能力无疑可使原料气净化成本大大降低,在工业应用方面表现出潜在的优势.  相似文献   

3.
研制了一种CO2加氢制甲醇用高活性和高选择性催化剂Cu-ZnO-Al2O3(简记为RK-11),测定了其催化性能.结果表明,当原料气组成(体积分数)为68.5%H2、2.0%CO、20.5%CO2、9.0%N2,温度为240℃,气体时空速度GHSV=6 000h-1,压力为8.0MPa时,CO2转化率达35.2%,CO转化率达39.8%,甲醇的时空产率达686.1g/(L·h),而甲醇在产物中的选择性达99.3%.  相似文献   

4.
近年来,由于大气CO_2浓度增加引起的温室效应正日益威胁着人类的生存与发展,CO_2的捕获与利用是有望解决温室效应和能源危机的有效途径.CO_2催化转化为甲醇成为众多研究者关注的焦点,这是因为甲醇不仅是一种重要的基本化工原料,也是一种洁净的绿色燃料和能源载体.Cu基催化剂广泛应用于CO_2加氢合成甲醇反应,并表现出良好的催化性能.通常,金属催化剂的制备是采用H_2对金属氧化物进行还原.然而,传统的气相还原过程伴随着强烈的热效应,且需要在高温(473-573 K)下进行,会引起表面铜颗粒长大并加速其聚集烧结,使得活性组分利用率下降.近年来,以NaBH_4为还原剂的液相还原法逐渐受到人们的重视,该方法操作简单、快捷且条件可控,反应在低温下进行,放出的热量可在液相环境中迅速得到转移,大大抑制了铜颗粒的聚集.因此,液相还原法可制备出高铜分散度、高活性的催化剂.焙烧温度对铜基催化剂结构和催化性能的影响已得到广泛探究,但这仅限于含二价铜物种催化剂,焙烧温度对含多种铜价态催化剂的影响未见报道.由于液相还原法制备的催化剂含有还原态的铜物种(Cu~0和Cu~+),它们比Cu~(2+)具有更强的流动性,因此在后续的焙烧过程中催化剂更容易发生烧结和聚集.本文采用液相还原法合成了Cu/Zn/Al/Zr催化剂,分别于423,573,723和873 K焙烧后用于CO_2加氢合成甲醇反应,考察了焙烧温度对制备的铜基催化剂结构性质和催化性能的影响,并与传统共沉淀法制备的催化剂进行了对比.结果显示,随着焙烧温度升高,铜物种聚集作用增强,金属铜颗粒尺寸增大,873 K时烧结出现显著增强.由于比表面积随焙烧温度升高而减小,高温度焙烧的催化剂具有小的表面碱性位数目.焙烧温度会影响催化剂中铜物种与其它组分的相互作用,进而影响催化剂的还原.随着焙烧温度的升高,催化剂的还原温度逐渐降低,表面Cu~+/Cu~0的比例先增后减.CO_2加氢活性评价显示,液相还原法制备的催化剂具有更高的催化活性,尤其是甲醇选择性;随着焙烧温度升高,催化剂的CO_2转化率和甲醇选择性先增后减,CZAZ-573催化剂具有最高活性,且在1000 h长周期活性测试中表现稳定.CO_2转化率与催化剂暴露金属铜的比表面积密切相关.相比Cu~0,产物甲醇更容易在Cu~+表面催化生成,催化剂表面的Cu~+/Cu~0比与甲醇选择性的变化规律一致.通过调控焙烧温度可得到高Cu比表面积以及高Cu~+/Cu~0比的催化剂,有利于CO_2加氢生成甲醇.  相似文献   

5.
作为最重要的还原产品,甲酸是CO_2还原中非常有价值的液体燃料.已有研究报道,Sn类金属电极对甲酸生成有很好的催化活性,所用电解液均为KHCO_3溶液(0.5 mol/L),但多数研究没有对其电解液条件的影响给出清晰解释.一般而言,电解液pH值会影响H2O和CO_2还原的电极电势,酸性环境有利于氢析出,碱性环境则不利于甲酸形成.在中性偏碱性环境,CO_2电解可以提供维持氧化物稳定性的可能性.同时,电解质浓度也极大地影响甲酸形成.研究表明,当在固定床反应器中使用Sn颗粒电极,在KHCO_3溶液(0.5 mol/L)中甲酸的法拉第效率比K_2CO_3溶液(0.1 mol/L)的法拉第效率更大.我们研究组通过简单的水热自组装法成功制备了一种纳米结构SnO_2催化剂.其中SnO_2-50纳米催化剂由三维多级结构组成,为纳米颗粒和微米球的聚集体,其中含有直径为500 nm-1μm的高度多孔结构.该催化剂负载气体扩散电极用于CO_2电化学还原,表现出优异的CO_2还原催化活性和甲酸选择性.与其他文献报道相比,该电极具有明显的低过电位(-0.56 V vs.SHE).经研究发现,这与甲酸形成由传质和电荷传递过程控制有关,同时CO_2还原强烈依赖于电解液条件.此外,催化剂的电化学性能和甲酸选择性强烈依赖于电解液浓度.在0.5 mol/L KHCO_3电解液中,当电解液浓度为0.1-0.5mol/L时,催化性能随电解液浓度增加而提高,同时在电解液浓度为0.5 mol/L时催化性能达到最佳,获得56%的甲酸法拉第效率,这主要是由于HCO3-直接参与反应的结果.在电解液浓度较低时,甲酸的形成由传质控制,而在电解液浓度较高时,甲酸的形成则由电荷传递控制.同时我们发现在形成甲酸过程中,电解液pH值对CO_2电化学还原过程有很大影响.为了研究电解液pH值影响,重点考察了pH值分别为6,7,8.3和9时的电位值,其原因是酸性过高有利于氢气形成,碱度过高不利于甲酸形成.结果表明,pH=8.3的电解液为CO_2还原的最佳电解液条件.此外,在最负的电势下,电解液pH=8.3时,阴极电流密度比其他电解液都大,几乎是pH=6的电解液的2倍.此时在中性偏碱性环境下,CO_2还原可以提供维持氧化物稳定性的可能性.当电解液pH增加到9.0时,甲酸产量及法拉第效率略有下降,可能是碱性环境不利于甲酸形成.同时,对SnO_2-50纳米催化剂经28 h电解后的甲酸法拉第效率的衰减机制进行了深入研究.结果表明,随着电解时间延长,甲酸法拉第效率衰减.电解时间为1-28 h时,法拉第效率和甲酸产量均保持平稳下降趋势,28 h后法拉第效率由初始的56%降至24%.有文献报道,甲酸法拉第效率随电解时间的改变主要是由于阳极上甲酸的氧化或阴极上杂质的污染.为了证明阴极电解后的状态,我们对SnO_2-50/GDL阴极电解前后的XPS谱进行了分析.结果发现,法拉第效率的下降是由于痕量氟离子沉积到SnO_2-50/GDL电极表面,这些痕量氟离子可能来自反应槽,阻碍电极表面CO_2电化学还原为甲酸.  相似文献   

6.
以偏钨酸铵微球为前驱体,在不同反应时间和CO/CO_2气氛条件下,通过原位还原碳化反应制备了具有核壳结构碳化钨复合微球。采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)和扫描电镜(SEM)等对催化剂的形貌和结构进行了表征分析。硼氢化钠还原法将平均粒径为4.6 nm的Pt纳米粒子均匀分布在其表面,得到核壳结构碳化钨复合催化剂。采用循环伏安和计时电流法研究了在酸性溶液中催化剂对甲醇的电催化氧化性能。结果表明,与Pt/WC-15 h和JM Pt/C催化剂的电化学性能相比,Pt/WC-6 h催化剂对甲醇呈现出更高的电催化氧化活性和稳定性。碳化钨复合微球表面少量WO2成分的存在有利于甲醇在其表面的电催化氧化过程的发生。  相似文献   

7.
Cu/ZrO_2催化剂的结构及其CO_2加氢合成甲醇催化反应性能   总被引:3,自引:0,他引:3  
采用低温氮气吸脱附、XRD、TPR、In-situ IR和XPS等表征手段,对分步沉淀法、浸渍沉淀法和固态反应法制备的CuO/ZrO2催化剂进行表征,同时考察了其CO2加氢合成甲醇反应性能。结果表明,制备方法对CuO/ZrO2的物理结构和还原性能影响很大,其中浸渍沉淀法制备的催化剂Cu与ZrO2相互作用最强,并显示了较高的CO2转化率和甲醇收率。Cu与ZrO相互作用的强弱直接影响CO加氢合成甲醇反应性能的优劣,而催化剂的比表面积不是影响反应性能的主导因素。  相似文献   

8.
可见光驱动的光催化制氢与有机氧化合成相结合由于其环境友好性和可持续性而极具吸引力,它可以在温和的条件下同时产生清洁的氢气燃料和高价值化学品,而无需牺牲剂。半导体材料和金属有机骨架(MOFs)材料由于其性能和优势,在光催化领域得到了广泛的应用。在这项工作中,我们通过静电自组装成功合成了一种名为Cd S/PFC-8的新型有效催化剂。其中,PFC-8作为镍基金属有机骨架,Cd S/PFC-8复合材料作为无贵金属催化剂,在可见光下具有优异的光催化制氢和苯甲醇氧化性能。对Cd S/PFC-8复合材料进行了一系列催化表征。X射线衍射(XRD)和扫描电子显微镜(SEM)结果表明了Cd S/PFC-8复合材料的成功合成。X射线光电子能谱(XPS)表明了Cd S纳米棒与PFC-8之间存在一定的界面相互作用。通过紫外-可见漫反射光谱(DRS)、光致发光光谱(PL)和电化学测试对光电性能进行了表征,表明Cd S/PFC-8复合材料的可见光响应和光催化可行性。对不同催化剂的光催化实验结果进行比较,在可见光下,Cd S/PFC-8复合材料将H2的产生与苯甲醇的选择性氧化耦合,表现出显著的H2产率3376μmol...  相似文献   

9.
对传统共沉淀法进行改进,在老化阶段通入CO2促进母液中前驱体物相的转变,制备了Cu/ZnO/Al2O3催化剂.N2吸附、X 射线衍射、场发射扫描电子显微镜、程序升温还原、程序升温分解结果表明,改进共沉淀法制备的催化剂前驱体中碱式硝酸铜更易转变为碱式碳酸铜,从而提高了前驱体的稳定性,并使得焙烧后的催化剂具有较大的比表面积...  相似文献   

10.
Cu/ZrO_2/SiO_2是有效的CO_2选择加氢制甲醇催化剂.为了理解混合氧化物基催化剂中ZrO_2的作用,在Cu和Zr的K边进行了原位X-射线吸收光谱测试.在反应条件下, Cu保持金属态,而Zr以三类配位环境的形式存在:体相ZrO_2,配位饱和的、以及不饱和的Zr(Ⅳ)表面位.配位不饱和Zr表面位可通过线性拟合参比的X射线吸收近边结构光谱进行定量,发现其数量与甲醇生成速率有关,因而表明Zr(Ⅳ)Lewis酸表面位在驱动选择生成甲醇反应中的重要性.这与提出的机理是一致的:在裂解H_2的Cu纳米颗粒与稳定反应中间体的Zr(Ⅳ)表面位之间的界面上进行CO_2加氢.  相似文献   

11.
用于CO2加氢合成甲醇超细CuO-ZnO/SiO2-ZrO2催化剂   总被引:11,自引:0,他引:11  
用溶胶-凝胶法制备了CuO-ZnO/SiO2-ZrO2复合氧化物催化剂,使用IR,XRD,TEM和BET等手段对催化剂的结构及表面性能进行了表征,考察了ZrO对该体系的表面性质,结构,CuO分散状态以及二氧化碳加氢合成甲醇的催化性能的影响。结果表明,该体系催化剂的比表面积大,活性组分分散均匀。  相似文献   

12.
Cu-ZnO is broadly used as a catalyst in CO2 reduction to produce methanol, but fabricating small-sized Cu-ZnO catalysts with strong Cu-ZnO interactions remains a challenge. In this work, a simple, low-cost method is proposed to synthesize small-sized Cu-ZnO/SiO2 with high activity and controllable Cu-ZnO interactions derived from copper silicate nanotubes. A series of Cu-ZnO/SiO2 samples with different amounts of ZnO were prepared. The activities of the as-prepared catalysts for methanol synthesis were tested, and the results revealed a volcano relationship with the weight fraction of ZnO. At 523 K, the methanol selectivity increased from 20% to 67% when 14% ZnO was added to the Cu/SiO2 catalyst, while the conversion of CO2 increased first and then decreased with the addition of ZnO. The optimum space time yield (STY) of 244 g·kg-1·h-1 was obtained on C-SiO2-7%ZnO at 543 K under 4.5 MPa H2/CO2. Furthermore, the synergistic effect of Cu and ZnO was studied by high resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS), and temperature-programmed reduction (TPR) analyses. The HRTEM images showed that the Cu particles come in contact with ZnO more frequently with increased addition of ZnO, indicating that the catalysts with higher ZnO contents have a greater probability of formation of the Cu-ZnO interface, which promotes the catalytical activity of Cu-ZnO/SiO2. Meanwhile, the HRTEM images, XRD patterns, and TPR results showed that the addition of excess ZnO leads to an increase in the size of the Cu particles, which in turn decreases the total number of active sites and further degrades the activity of the catalysts. The activation energy (Ea) for methanol synthesis and reverse water gas shift (RWGS) was calculated based on the results of the catalytical test. With the addition of ZnO, Ea for methanol synthesis decreased from 72.5 to 34.8 kJ·mol-1, while that for RWGS increased from 61.3 to 102.7 kJ·mol-1, illustrating that ZnO promotes the synergistic effect of Cu-ZnO. The results of XPS and in situ DRIFTS showed that the amount of Cu+ species decreases with the addition of ZnO, indicating that the Cu-ZnO interface serves as the active site. The Cu surface area and the turnover frequency (TOF) of methanol were calculated based on the H2-TPR curves. The TOF of methanol on the Cu-ZnO/SiO2 catalysts at 543 K increased from 1.5 × 10-3 to 3.9 × 10-3 s-1 with the addition of ZnO, which further confirmed the promotion effect of the Cu-ZnO interface on the methanol synthesis. This study provides a method to construct Cu-ZnO interfaces based on copper silicate and to investigate the influence of ZnO on Cu-ZnO/SiO2 catalysts.  相似文献   

13.
酯类化合物在工业上具有广泛应用,例如可用于合成香水、调味剂(味精)、洗涤剂和表面活性剂等.其中,烯烃的氢烷氧基羰基化反应是一种合成酯类化合物的重要方法,其低消耗、100%的原子经济性和原料的易获得等优势使其在制备酯类化合物中成为一个有效且实际可行的方法.对于该反应,文献多采用Pd或Rh的络合均相催化剂,其中控制反应过程中直链酯类化合物(L)和支链酯类化合物(B)的选择性是一项颇具挑战性的课题.虽然目前可通过配体的设计和修饰来调节,但多集中在均相催化体系,因此在选择性调变方面的研究仍很欠缺.相对于均相催化,多相催化由于产物易分离和提纯、催化剂可循环使用等优势而逐渐引起了研究者的广泛关注.在多相催化体系中, Pd负载在强酸性树脂作为催化剂已被应用于苯乙烯氢甲氧基羰基化反应,但在该反应中支链酯类化合物为主要产物.因此,寻找一个可有效改善多相反应体系中选择性问题的方法是非常有意义的.在本研究工作中,我们分别以CeO_2纳米颗粒(NP)、CeO_2纳米棒(Rod)和CeO_2纳米立方体为载体,利用浸渍法制备了Ru/CeO_2、Ru/CeO_2-rod和Ru/CeO_2-cube三种催化剂,并进一步用于苯乙烯氢甲氧基羰基化反应.探究了CO压力、反应温度和反应时间对三种催化剂催化苯乙烯氢甲氧基羰基化反应的影响.结果表明, Ru/CeO_2作为多相催化剂催化苯乙烯氢甲氧基羰基化反应时,苯乙烯选择性高于99%,直链酯选择性为83%,支链酯选择性为12%.机理研究表明,该反应为自由基机理.动力学分析表明,该反应的反应活化能为48.50 k Jmol–1.结合三种催化剂的反应活性以及HRTEM结构表征结果可知,该反应中L/B比值与Ru的尺寸有较大关系.进一步的拉曼表征和NH3-TPD表征结果证明, Ru的尺寸与金属-载体之间的相互作用以及催化剂表面的氧空位浓度有直接关系.  相似文献   

14.
工业上常用玉米生产乙醇,从而造成粮食和燃料的选择两难局面.随着页岩气研究的不断深入以及全球可观的煤炭存量,用醋酸甲酯加氢制乙醇已引起广泛关注.铜基催化剂对酯加氢生成醇有高的转化率和选择性,其中铜铬催化剂性能较高,但铬对人体和环境的潜在危害限制了其广泛应用.Cu/SiO_2催化剂价格低廉,环境友好,但其稳定性较差,容易失活不利于工业上应用.因此人们对Cu/SiO_2催化剂进行改性.本文采用氨蒸法制备了一系列掺杂不同量氧化铟(In_2O_3)的Cu催化剂(In-Cu/SiO_2).采用X射线衍射(XRD)、氮气吸脱附、氢气程序升温脱附(H_2-TPD)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)以及电感耦合等离子体发射光谱(ICP-OES)等手段对催化剂进行了表征,同时评价了催化剂的活性和稳定性.结果发现,In_2O_3的改性提高了Cu/SiO_2催化剂在醋酸甲酯加氢制乙醇反应中的活性和稳定性;其中当添加1%In_2O_3时,醋酸甲酯转化率从-83.7%提高至97.8%(反应温度523 K,反应压力3 MPa,氢酯摩尔比15,液时空速2 h1),且对液时空速的变化耐受性比较强.当液时空速大于-3 h1时,随着液时空速的增加,Cu/SiO_2催化剂的活性和选择性急剧下降,而1In-Cu/SiO_2催化剂变化相对较小.TEM和XRD结果表明,适量In_2O_3的掺入改善了Cu/SiO_2催化剂活性组分的分散性,铜粒径变小;FT-IR和N_2O化学吸附结果显示,In_2O_3的加入使得页硅酸铜含量增加,从而有效地抑制了催化剂还原过程中铜的聚合,因此催化剂性能提高.XPS结果表明,表面Cu~0和Cu~+活性位点之间的协同作用有助于改善催化剂性能.Cu/SiO_2和1In-Cu/SiO_2催化剂100 h的稳定性测试发现,Cu/SiO_2催化剂的失活主要是由于活性组分颗粒尺寸聚集变大和表面Cu~0和Cu~+分布的破坏所致;而1In-Cu/SiO_2催化剂物化性质几乎保持不变,表明适量的In_2O_3可稳定Cu/SiO_2催化剂,延长其使用寿命.由此推断,In_2O_3可能作为一种隔离剂以抑制铜纳米粒子的热迁移和聚集,从而有效地提高Cu/SiO_2催化剂活性和稳定性.  相似文献   

15.
刘蓉  王铁峰  刘畅  金涌 《催化学报》2013,34(12):2174-2182
以磷钨酸铯盐Cs2.5H0.5PW12O40(CsPW)为活性组分,负载到Nb2O5载体上,并用于甘油脱水制备丙烯醛的反应中.通过调节焙烧温度(400–700°C)以及活性组分负载量(5儃60 wt%),对催化剂酸性进行调节.CsPW负载量为20 wt%,500°C焙烧的CsPW/Nb2O5催化剂性能最佳,甘油转化率为96%,丙烯醛选择性为80%,反应10 h内没有失活现象,并且该催化剂具有良好的热稳定性,可通过烧炭进行再生.  相似文献   

16.
Using renewable green hydrogen and carbon dioxide (CO2) to produce methanol is one of the fundamental ways to reduce CO2 emissions in the future, and research and development related to catalysts for efficient and stable methanol synthesis is one of the key factors in determining the entire synthesis process. Metal nanoparticles stabilized on a support are frequently employed to catalyze the methanol synthesis reaction. Metal-support interactions (MSIs) in these supported catalysts can play a significant role in catalysis. Tuning the MSI is an effective strategy to modulate the activity, selectivity, and stability of heterogeneous catalysts. Numerous studies have been conducted on this topic; however, a systematic understanding of the role of various strengths of MSI is lacking. Herein, three Cu/ZnO-SiO2 catalysts with different strengths of MSI, namely, normal precipitation Cu/ZnO-SiO2 (Nor-CZS), co-precipitation Cu/ZnO-SiO2 (Co-CZS), and reverse precipitation Cu/ZnO-SiO2 (Re-CZS), were successfully prepared to determine the role of such interactions in the hydrogenation of CO2 to methanol. The results of temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) characterization illustrated that the MSI of the catalysts was considerably affected by the precipitation sequence. Fourier transform infrared reflection spectroscopy (FT-IR) results indicated that the Cu species existed as CuO in all cases and that copper phyllosilicate was absent (except for strong Cu-SiO2 interaction). Transmission electron microscopy (TEM), X-ray diffraction (XRD), and N2O chemical titration results revealed that strong interactions between the Cu and Zn species would promote the dispersion of Cu species, thereby leading to a higher CO2 conversion rate and improved catalytic stability. As expected, the Re-CZS catalyst exhibited the highest activity with 12.4% CO2 conversion, followed by the Co-CZS catalyst (12.1%), and the Nor-CZS catalyst (9.8%). After the same reaction time, the normalized CO2 conversion of the three catalysts decreased in the following order: Re-CZS (75%) > Co-CZS (70%) > Nor-CZS (65%). Notably, the methanol selectivity of the Re-CZS catalyst was found to level off after a prolonged period, in contrast to that of Co-CZS and Nor-CZS. Investigation of the structural evolution of the catalyst with time on stream revealed that the high methanol selectivity of the catalyst was caused by the reconstruction of the catalyst, which was induced by the strong MSI between the Cu and Zn species, and the migration of ZnO onto Cu species, which caused an enlargement of the Cu/ZnO interface. This work offers an alternative strategy for the rational and optimized design of efficient catalysts.  相似文献   

17.
由于工业快速发展和人类活动加剧,作为最重要温室气体二氧化碳(CO2)的排放问题已经受到全球广泛关注,因此将CO2转化成甲醇等碳氢化合物不仅具有重要的科学意义,还具有广阔应用前景.Cu/Ce O2是重要的CO2加氢催化剂,但是由于Cu O-Ce O2界面存在状态在反应过程中较复杂,例如Cu氧化数可能存在0,+1和+2,Ce存在着+3和+4等氧化数;相应催化剂中氧化还原循环种类较多,存在着Cu2+/Cu+,Cu2+/Cu0,Cu+/Cu0和Ce4+/Ce3+等氧化还原对;Ce O2极易形成氧空穴;此外,Cu与Ce O2也易形成固溶体等,因此Cu/Ce O2的催化活性中心目前仍存在着争议.同时Cu/Ce O2催化剂价态和存在...  相似文献   

18.
铜基催化剂是工业合成甲醇中常用的催化剂,其主要包含Cu, ZnO, Al_2O_3三种组分,研究各组分在催化合成甲醇过程中的本质作用及其相互间的协同作用不仅是一个催化基础科学问题,同时对于设计和合成新型高性能的铜基催化剂也有重要指导作用.以往的研究主要针对Cu和ZnO二元组分,关于Al_2O_3的作用很少有报道,主要观点认为Al_2O_3起结构助剂的作用.在Cu/Al_2O_3/ZnO(0001)-Zn模型催化体系的研究中,我们发现Al_2O_3具有稳定Cu~+的能力.为了更接近于实际催化体系,并进一步探索铜基催化剂中载体Al_2O_3及ZnO的作用,我们制备了负载型的5 wt%Cu/Al_2O_3及5 wt%Cu/ZnO催化剂,并通过原位傅里叶变换红外光谱(in situ FTIR)、准原位X射线光电子能谱(ex situ XPS)及高灵敏度低能离子散射谱(HS-LEIS),着重考察H2还原及CO_2加氢过程中表面吸附物种的转变及催化剂表面结构变化,更深一步理解Cu, ZnO, Al_2O_3三组分在催化CO_2加氢过程中所起的作用及相互间的协同作用.通过XRD, BET和TEM表征,发现采用浸渍负载法制备的、经过焙烧后的5 wt%Cu/Al_2O_3及5 wt%Cu/ZnO催化剂的结构和形貌有明显差别, Al_2O_3载体具有较大的比表面积, CuO在其表面分散性较好,而ZnO的比表面积很小、CuO颗粒也相对较大.ExsituXPS及HS-LEIS显示,经过H2还原后, Cu在Al_2O_3表面的颗粒粒径略有增大,表面仍有较大比例的Cu~+物种.以CO为探针分子的FTIR光谱也表明, H2还原后5 wt%Cu/Al_2O_3存在一定量的Cu~+,而5 wt%Cu/ZnO催化剂还原后形成Cu纳米粒子表面被ZnOx包覆, exsituXPS及HS-LEIS的深度剖析也证实了上述结果.CO_2加氢过程中, 5wt%Cu/Al_2O_3表面能够形成大量碳酸氢盐及碳酸盐物种并在升温过程中逐渐转变为甲酸盐,表面仍有一定量的Cu~+;5wt%Cu/ZnO表面形成的碳酸盐及碳酸氢盐物种含量相对较少,但Cu-ZnOx的协同作用形成活化H2的高活性表面,在室温下就可以生成甲酸盐物种,在随后的升温过程中甲酸盐逐渐转变为甲氧基.通过对比负载型Cu/Al_2O_3及Cu/ZnO催化剂的研究,得以更加深入地理解铜基催化剂中载体在CO_2加氢制甲醇过程中所起的作用:Al_2O_3能较好分散Cu,且能够稳定Cu~+;相对于ZnO, Al_2O_3具有较强的吸附CO_2能力,能够在表面形成大量的碳酸氢盐物种及碳酸氢盐物种,与表面Cu作用在升温过程中能够生成大量的甲酸盐物种;对于5wt%Cu/ZnO在H2还原和CO_2加氢过程中Cu表面被ZnOx包覆,其高度缺陷的表面结构能在室温下解离H2.这些结果表明,实际Cu Zn AlO催化剂上CO_2加氢制备甲醇的活性位点可能包含Cu~+, Cu~0及相邻的具有高度缺陷结构的ZnOx包覆层.  相似文献   

19.
合成气直接转化高选择性制烃类产物仍是巨大的挑战.本文合成了以Cr-Zn氧化物为核,Si O2为中间过渡层,再通过原位水热合成覆盖一层SAPO-34分子筛为壳的核壳结构催化剂.合成气转化反应结果显示,与纯Cr-Zn金属氧化物相比,核壳结构催化剂将产物分布由甲醇和甲烷移动至C2–C4烃(所有烃类产物中占66.9%).这表明核壳结构催化剂用于合成气一步法直接转化制液化石油气的反应具有可行性,但是催化剂结构和组成有待于进一步优化,以提高其催化反应性能.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号