首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
实验采用某铜冶炼生产企业的铜阳极泥样品,对其中的金含量进行测定。用王水溶解样品,王水(3%)定容至100 mL容量瓶中,用电感耦合等离子体原子发射光谱法测定。实验表明,选择Au242.795nm为分析谱线,方法检出限为(n=11)0.09μg/mL,测定下限为0.27μg/mL,加标回收率在97%~107%,线性相关系数为0.999 928,分析结果满足要求。  相似文献   

2.
实验采用某铜冶炼生产企业的铜阳极泥样品,对其中的金含量进行测试。用王水溶解样品,在3%王水酸度下,定容至100mL容量瓶,用电感耦合等离子体发射光谱法测定。经试验研究,选择242.795nm为分析谱线,方法检出限为(n=11)0.09μg/mL,测定下限为0.27μg/mL,加标回收率在97%-107%之间,线性相关系数为:0.999928,分析结果满足要求。  相似文献   

3.
采用碳酸钠-碳酸钾-硼酸分解试样,盐酸浸取,电感耦合等离子体原子发射光谱法测定粉煤灰中的铝含量。铝的测定范围5.00%~25.00%。经加标回收实验,铝元素的加标回收率为99.6%~106%(n=3),方法准确简单,适用于粉煤灰中铝的测定。  相似文献   

4.
采用碳酸钠-碳酸钾-硼酸分解试样,盐酸浸取,电感耦合等离子体原子发射光谱法测定粉煤灰中的铝含量。铝的测定范围5.00%~25.00%。经加标回收实验,铝元素的加标回收率为99.6%~106%(n=3),方法准确简单,适用于粉煤灰中铝的测定。  相似文献   

5.
采用碳酸钠-碳酸钾-硼酸分解试样,盐酸浸取,电感耦合等离子体原子发射光谱法测定粉煤灰中的铝含量。铝的测定范围5.00%~25.00%。经加标回收实验,铝元素的加标回收率为99.6%~106%(n=3),方法准确简单,适用于粉煤灰中铝的测定。  相似文献   

6.
建立了电感耦合等离子体原子发射光谱(ICP-AES)法测定铜冶炼烟尘中锌含量的分析方法。针对样品中碳、硅含量高的特点,有针对性地研究了样品的消解方法,确定采用盐酸、硝酸、氢氟酸、高氯酸对铜冶炼烟尘样品进行消解。同时进行了干扰实验,确定样品中高含量的铜、铅、砷等对样品测定结果没有影响。并对仪器的工作参数进行了优化。方法检出限为0.011mg/L,测定下限为0.019mg/L,3个样品的相对标准偏差在0.54%~0.92%,加标回收率在96.0%~101%。样品消解完全,流程短,操作简单,快速,测定准确度高,可以满足铜冶炼烟尘中锌含量的测定。  相似文献   

7.
建立了电感耦合等离子体原子发射光谱(ICP-AES)法测定铁矿石中钒含量的分析方法。采用盐酸、硝酸、氢氟酸、高氯酸分解试样,不溶物残渣碱熔融回收,稀盐酸溶解盐类的方式对样品进行分解。对仪器的主要工作参数和分析谱线进行了选择,讨论了基体和共存元素的干扰,以及溶解酸和熔剂等条件实验,确立了最佳分析条件。按实验方法对铁矿石标准样品和试样中钒量进行测定,测定值与标准值或其它方法的认定值基本一致,相对标准偏差RSD<6.5%。  相似文献   

8.
建立了电感耦合等离子体原子发射光谱(ICP-AES)法测定铁矿石中钒含量的分析方法。采用盐酸、硝酸、氢氟酸、高氯酸分解试样,不溶物残渣碱熔融回收,稀盐酸溶解盐类的方式对样品进行分解。对仪器的主要工作参数和分析谱线进行了选择,讨论了基体和共存元素的干扰,以及溶解酸和熔剂等条件实验,确立了最佳分析条件。按实验方法对铁矿石标准样品和试样中钒量进行测定,测定值与标准值或其它方法的认定值基本一致,相对标准偏差RSD6.5%。  相似文献   

9.
建立了电感耦合等离子体原子发射光谱(ICP-AES)法测定铁矿石中钒含量的分析方法。采用盐酸、硝酸、氢氟酸、高氯酸分解试样,不溶物残渣碱熔融回收,稀盐酸溶解盐类的方式对样品进行分解。对仪器的主要工作参数和分析谱线进行了选择,讨论了基体和共存元素的干扰,以及溶解酸和熔剂等条件实验,确立了最佳分析条件。按实验方法对铁矿石标准样品和试样中钒量进行测定,测定值与标准值或其它方法的认定值基本一致,相对标准偏差RSD<6.5%。  相似文献   

10.
采用盐酸-硝酸-高氯酸-氢氟酸前处理样品,电感耦合等离子体原子发射光谱法测定铁矿石中的磷。对磷元素的分析谱线、样品称样量等工作条件进行了优化,解决了非金属元素磷的分析谱线难选择、样品称样量影响测定准确度的技术难点;采用内标法,降低了样品基体效应及仪器波动产生的影响,提高了分析结果的精密度和准确度。利用所建立的方法快速分析了铁矿石中磷的含量,方法检出限为0.003 6mg/L,测定范围为0.012%~2%,测定结果与标准值和化学法测定结果相符,相对标准偏差(RSD,n=9)小于2%。拟定的方法和分光光度法进行比对实验,技术优势明显。  相似文献   

11.
采用盐酸-硝酸-高氯酸-氢氟酸前处理样品,电感耦合等离子体原子发射光谱法测定铁矿石中的磷。对磷元素的分析谱线、样品称样量等工作条件进行了优化,解决了非金属元素磷的分析谱线难选择、样品称样量影响测定准确度的技术难点;采用内标法,降低了样品基体效应及仪器波动产生的影响,提高了分析结果的精密度和准确度。利用所建立的方法快速分析了铁矿石中磷的含量,方法检出限为0.0036 mg/L,测定范围为0.012%~2%,测定结果与标准值和化学法测定结果相符,相对标准偏差(RSD,n=9)小于2%。拟定的方法和分光光度法进行比对实验,技术优势明显。  相似文献   

12.
采用电感耦合等离子体原子发射光谱(ICP-AES)法测定二次电池废料中的钴含量。根据分析线的选择原则,采用干扰少、灵敏度相对低的波长201.153nm谱线作为方法分析线。以稳定性为原则优化了仪器测定条件,探讨了酸度效应和共存元素的影响。方法具有快速简便、良好的准确度和精密度,校准曲线的线性相关系数为0.999 9,加标回收率为94.3%~105%,相对标准偏差(n=8)小于1%。方法适用于二次电池废料含量小于10%的钴量测定,适用于工业化生产的日常分析。  相似文献   

13.
采用电感耦合等离子体原子发射光谱(ICP-AES)法测定二次电池废料中的钴含量。根据分析线的选择原则,采用干扰少、灵敏度相对低的波长201.153nm谱线作为方法分析线。以稳定性为原则优化了仪器测定条件,探讨了酸度效应和共存元素的影响。方法具有快速简便、良好的准确度和精密度,校准曲线的线性相关系数为0.999 9,加标回收率为94.3%~105%,相对标准偏差(n=8)小于1%。方法适用于二次电池废料含量小于10%的钴量测定,适用于工业化生产的日常分析。  相似文献   

14.
采用盐酸-硝酸溶解钼镧合金样品,建立了电感耦合等离子体原子发射光谱(ICP-AES)法测定钼镧合金中镧含量的分析方法,给出影响测定结果的不确定度分量。选择379.478nm为镧的分析谱线,通过基体匹配法消除基体钼的干扰。在优化条件下对钼镧合金样品进行测定,线性相关系数达到0.999以上,定量下限为0.048%,测定结果的相对标准偏差(RSD,n=11)小于3%,加标回收率为93.0%~105%。方法快速、准确,可满足实际生产中钼镧合金样品的测定要求。  相似文献   

15.
采用碱熔再酸化分解样品,电感耦合等离子体原子发射光谱法(ICP—AES)测定高铁土壤中Al。通过逐级扩大线性范围的方式,选取测定高含量Al的合适谱线;在标准中逐级加入铁基体,考察了铁基体浓度从20μg/mL到80μg/mL时对测定Al的各谱线的干扰情况。用ICP—AES对国家标准物质GSS-1,GSS-2,GSS-3,GSS-4,GSS-5进行测定,测定值与认定值的相对误差(RE)在-0.37 %~0.31%之间,RSD(n= 5)为0.26%~0.75% 。  相似文献   

16.
采用过氧化钠分解试样,盐酸浸取,通过仪器参数的优化、共存元素干扰等实验,建立了电感耦合等离子体原子发射光谱法测定电镀废弃物中镍含量的方法。方法的测定范围ω(Ni)1.00%~10.00%。经加标回收实验,镍元素的加标回收率为99.0%~107%(n=3),方法准确可靠,完全能够满足此类物料中镍含量的检验工作。  相似文献   

17.
采用硝酸+酒石酸溶解试样,电感耦合等离子体原子发射光谱(ICP-AES)法测定高铋铅中的铜、铁、镍、镉、砷、锑和铋的含量。测定范围为ωCu(0.10%~5.00%)、ωF e(0.001%~0.10%)、ωNi(0.001%~0.10%)、ωCd(0.001%~0.050%)、ωAs(0.50%~7.00%)、ωSb(0.50%~5.00%)、ωBi(1.00%~7.00%)。经加标回收实验,各元素的加标回收率为91.5%~115%。方法准确简单,适用于高铋铅中铜、铁、镍、镉、砷、锑和铋量的同时测定。  相似文献   

18.
采用过氧化钠分解试样,盐酸浸取,通过仪器参数的优化、共存元素干扰等实验,建立了电感耦合等离子体原子发射光谱法测定电镀废弃物中镍含量的方法。方法的测定范围ω(Ni)1.00%~10.00%。经加标回收实验,镍元素的加标回收率为99.0%~107%(n=3),方法准确可靠,完全能够满足此类物料中镍含量的检验工作。  相似文献   

19.
建立了电感耦合等离子体原子发射光谱(ICP-AES)法同时测定硫化物矿石中Cu、Pb、Zn三种元素的方法,取代了传统的四酸(HCl+HNO3+HClO4+HF)溶样法,采用简单的盐酸和硝酸溶解矿石,大大缩短了分析时间。选择干扰少且灵敏度高的谱线作为待测元素的分析谱线,采用左右两点扣背景的方法校正光谱干扰和基体匹配方法消除物理干扰,用GBW07162和GBW07163等不同种类的国家一级标准物质进行精密度和准确度实验,测定结果的相对标准偏差都在10%以内,测定结果都在标准值的误差范围内,符合地质矿产开发的要求。  相似文献   

20.
针对锗精矿分析过程中样品难溶解、锗易损失以及滴定法测定流程复杂等难点,本文建立了碱熔-电感耦合等离子体原子发射光谱(ICP-AES)法测定锗精矿中锗含量的分析方法。考察了仪器的工作条件、不同的溶样方式、熔样温度和时间、介质酸度、共存元素对测定结果的影响,确定了最佳的实验条件:采用过氧化钠在700℃熔融10min,用硝酸浸取进行前处理;在电感耦合等离子体原子发射光谱仪上选择209.426nm作为分析谱线,仪器在200 nm处光谱的实际分辨率小于0.01 nm;在10%的硝酸介质中采用钠基体匹配的方式进行测定。在该实验条件下,实验结果表明方法中仪器的短期稳定性小于1.5%,工作曲线具有良好的线性相关性,相关系数为0.99993,方法的检出限是0.023μg/mL。同时,选择了两个锗精矿国家标准样品GSB 04-3358-2016(Ge 4.91%)和GSB 04-3361-2016(Ge23.57%)进行分析,分析结果与标值基本一致,无显著性差异;进行了精密度和回收率试验,相对标准偏差在0.42%~1.32%之间,回收率在98.1%~101.8%之间,该方法具有较好的精密度和稳定性,能够满足锗精矿中锗含量范围在1%~25%的快速准确测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号