首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
为了提高金属纳米粒子在石墨烯片上的分散度,通过组氨酸功能化石墨烯量子点(His-GQD)作为桥梁,设计合成银铜双金属/His-GQD/石墨烯杂化物(AgCu/His-GQD/G)。His-GQD通过π-π堆积作用固定到氧化石墨烯上,然后与银离子和铜离子结合形成复合物,最后在氮气保护下热还原获得AgCu/His-GQD/G。形成的杂化物表现出独特的三维结构,且银、铜纳米粒子均匀分散在石墨烯片上。基于该杂化物构建了电化学适配体传感器,适配体与杂化物上的银、铜纳米粒子通过Ag-N和Cu-N键连接而修饰到电极表面上,用于毒死蜱、克百威和多菌灵的测定,表现出高的灵敏度和选择性。毒死蜱、克百威和多菌灵标准曲线的线性范围分别为1.00×10^(-2)~1.00×10^(3)pmol·L^(-1)、1.00×10^(-1)~1.00×10^(4)pmol·L^(-1)和1.00~1.00×10^(6)pmol·L^(-1),检出限(3S/N)分别为3.2×10^(-3)pmol·L^(-1)、2.3×10^(-2)pmol·L^(-1)和2.9×10^(-1)pmol·L^(-1)。该适配体传感器用于黄瓜样品中克百威、毒死蜱和多菌灵的测定,仅检出多菌灵,检出量为1.21 pmol·L^(-1)和1.25 pmol·L^(-1);并按标准加入法进行回收试验,回收率为99.3%~100%。  相似文献   

3.
郭颖  李午戊  郑敏燕  黄怡 《化学学报》2014,72(6):713-719
基于石墨烯量子点(GQD)的还原性,在无需外加保护剂的条件下,采用一步法成功制备了稳定性高、分散性好的石墨烯量子点功能化的金纳米粒子(GQD@AuNPs).所制备的GQD@AuNPs有优良的过氧化物模拟酶催化活性,能够有效地催化H2O2氧化3,3’,5,5’-四甲基联苯胺(TMB)产生显色反应.以TMB为模型底物,研究了催化条件(温度和pH)对催化活性的影响.电子自旋共振光谱(ESR)结果表明,GQD@AuNPs与辣根过氧化物酶(HRP)类似,能有效地催化H2O2分解成羟基自由基(·OH).基于此,结合葡萄糖在葡萄糖氧化酶(GOx)作用下产生H2O2的原理,建立了可视化检测血清中葡萄糖含量的简便方法.在优化条件下,本方法的检测范围为2.0×l0-6~4.0×l0-5 mol·L-1,检出限为3.0×l0-7 mol·L-1,并对实际样品进行测定,测定结果与临床结果一致.  相似文献   

4.
马志莹  高雪  王莹  刘秀英 《化学通报》2022,85(3):351-355
表层海洋pH正以约每年0.002的速度下降,这种变化将会对地球的化学循环和气候变化的物理化学参数产生潜在的影响。为了准确了解海洋的酸化程度,本文建立了一种快速准确检测海水pH的方法。采用柠檬酸热解法合成石墨烯量子点(GQDs),以谷胱甘肽(GSH)为模板合成金纳米簇(GSH-AuNCs),将GQDs和GSH-AuNCs结合制成GQDs-AuNCs比率荧光传感器,用于海水pH的检测。在酸性条件下,由于GSH-AuNCs表面的羧基发生质子化,GSH-AuNCs分子之间的静电斥力减弱因而发生聚集,荧光强度随之降低。在碱性条件下,GSH-AuNCs表面的羧基脱质子化,GSH-AuNCs分子之间的静电斥力增强,荧光强度也随之增强。在pH 2~11范围内,GQDs-AuNCs比率荧光探针的荧光强度比值(I565/I440)与pH之间呈线性相关。将该方法用于海水的pH检测,得到较好的实验结果。  相似文献   

5.
该文以四环素为模板分子,4-氨基苯硫酚(4-ATP)为功能单体,采用循环伏安法在金纳米粒子和石墨烯量子点复合材料修饰的玻碳电极表面电聚合分子印迹膜,制备四环素(TC)分子印迹传感器(MIPs/GQDs-AuNPs/GCE),并通过循环伏安法(CV)、电化学交流阻抗法(EIS)和线性扫描伏安法(LSV)等研究了其电化学响应性能。结果表明,该传感器对四环素具有良好的电流响应。在最佳实验条件下,TC氧化峰电流值与其浓度在2.0×10-8~3.0×10-5 mol/L范围内呈良好的线性关系,相关系数为0.999 4,检出限为1.5×10-9 mol/L,加标回收率为97.9%~106%。该传感器稳定性好、响应灵敏、选择性高,具有良好的应用前景。  相似文献   

6.
于浩  高小玲  徐娜  陈小霞  冯晓  金君 《分析测试学报》2016,35(11):1416-1421
采用过氧化氢刻蚀法制备石墨烯量子点(GQDs),再采用原位化学还原法制备金纳米粒子-石墨烯量子点纳米复合物(Au NPs-GQDs),最后以聚二甲基二烯丙基氯化铵(PDDA)为交联剂将上述纳米复合物组装于多壁碳纳米管表面,制得金纳米粒子-石墨烯量子点-PDDA-多壁碳纳米管复合材料(Au NPs-GQDsPDDA-MWCNTs)。通过荧光光谱法、紫外-可见吸收光谱法和透射电子显微镜对上述复合材料进行表征。采用滴涂法制得该复合材料修饰的玻碳电极,研究了过氧化氢在该电极上的电化学行为。结果表明:在石墨烯量子点、金纳米粒子和多壁碳纳米管三者的协同作用下,该电极对过氧化氢的电氧化表现出强的催化活性。在优化条件下,安培法检测H_2O_2的线性范围为2.0×10~(-8)~1.5×10~(-3)mol/L,检出限(3sb)为8.0×10~(-9)mol/L,灵敏度为61.6μA/(mmol·L~(-1))。  相似文献   

7.
对氧化石墨烯纳米材料进行HNO3氧化处理, 制备了水溶性好且具有强电化学发光(ECL)活性的大尺寸石墨烯量子点组装体(Large-sized graphene quantum dot assemblies, LSGQD-NAs). 利用透射电子显微镜(TEM)、 原子力显微镜(AFM)、 傅里叶变换红外光谱(FTIR)和拉曼光谱(Raman)等方法对其进行了表征, 结果表明, 石墨烯量子点组装体的平均高度为20 nm, 且富含大量的羟基和羧基. 电化学测试结果显示, 在共反应物K2S2O8存在下, LSGQD-NAs在阴极产生很强的ECL(峰值约在685 nm); 并推测了其ECL反应机理, 发现LSGQD-NAs容易通过中心未氧化的石墨烯π-π作用于GC电极表面进行组装修饰. 本研究为基于石墨烯量子点ECL传感器的研究提供了新方法.  相似文献   

8.
以柠檬酸和组氨酸混合物为碳源采用高温热解法制备组氨酸功能化石墨烯量子点(CH-GQD).CH-GQD是由平均尺寸仅为3.5 nm的石墨烯片组成,片的边缘含有丰富亲水基团,产品极易溶于水,具有强而稳定的荧光发射.将CH-GQD包覆于硅纳米粒子表面得到石墨烯量子点@硅复合物,以此复合物电极为负极、金属锂片为正极装配锂电池,并测试其电化学性能.研究表明,CH-GQD的引入使硅负极的电子转移阻抗下降超过14.7倍,电极与电解质之间的锂离子扩散系数提高310倍,减少了因硅与电解液分子发生副反应造成的储锂容量迅速衰减.CH-GQD@Si电池在50和1000 mA·g-1恒电流下首次放电容量分别是3325和1119 mAh·g-1.在100 mA·g-1电流密度下循环100圈放电容量仍保持1454.4 mAh·g-1.CH-GQD@Si的电池行为明显优于硅负极和柠檬酸和丙氨酸热解产生石墨烯量子点(CA-GQD)改性后的硅负极.由于CH-GQD和CA-GQD在结构上仅相差一个咪唑边缘基团,上述结果还证明咪唑基对提高复合物电极电化学性能发挥了重要作用.  相似文献   

9.
通过电聚合方法制备聚对氨基苯磺酸修饰的玻碳电极(GCE/pABSA),然后把带有正电荷的超支化聚乙烯亚胺功能化还原氧化石墨烯(BPEIGr)和带有负电荷的金纳米粒子(AuNPs)依次修饰到电极上,制得GCE/pABSA/BPEIGr/AuNPs修饰电极。研究了双酚A在GCE/pABSA/BPEIGr/AuNPs修饰电极上的电化学行为。结果表明,所制备的修饰电极对双酚A有良好的电催化效果,在pH 7.0的PBS溶液中进行循环伏安扫描,双酚A在0.2~0.8 V范围内出现1个不可逆的氧化还原峰。采用差分脉冲伏安法(DPV)对双酚A进行了检测,在优化的条件下,双酚A的浓度在0.05~10μmol/L范围内与氧化峰电流呈线性关系,检出限为0.02μmol/L(3σ)。将基于此修饰电极的传感器用于浑河水和自来水中双酚A含量的测定,加标回收率在97.0%~105.0%之间。  相似文献   

10.
以石墨烯量子点(GQDs)为还原剂和稳定剂,在其表面原位生长银纳米粒子(AgNPs),制备了具有良好分散性的GQDs/AgNPs纳米复合物,其粒径小于30 nm.GQDs/AgNPs纳米复合物具有类过氧化物酶的催化活性,能有效催化H2O2氧化3,3',5,5'-四甲基联苯胺(TMB)并发生显色反应.稳态动力学分析表明,GQDs/AgNPs催化动力学遵循典型的Michaelis-Menten模型,其催化机理符合乒乓机制.与辣根过氧化物酶(HRP)相比,GQDs/AgNPs纳米复合物具有更强的亲和性.基于GQDs/AgNPs的催化活性和葡萄糖氧化产生H2O2的原理,建立了H2O2和葡萄糖的比色检测方法,检出限分别为0.18和1.6 μmol/L.将本方法应用于血浆中葡萄糖的检测分析,结果与标准方法相符.  相似文献   

11.
李理  卢红梅  邓留 《分析化学》2013,(5):719-724
利用阴离子型聚合物聚乙烯吡咯烷酮(PVP)保护的带负电荷的还原态石墨烯(GN)与带正电荷的金纳米棒(AuNR)之间的静电吸附,通过层层自组装的方法研制出一种新型过氧化氢(H2O2)传感器。首先将PVP保护的石墨烯(PVP-GNs)吸附到表面干净的裸玻碳电极(GCE)上,再将PVP-GNs修饰的电极浸泡于金纳米棒溶液中,通过静电吸附将金纳米棒负载在PVP-GNs膜之上。以循环伏安及计时安培电流等方法对修饰电极的性质进行了表征。结果表明,制备的PVP-GNs-AuNRs/GCE对H2O2的催化还原显示出好的电催化活性。测定H2O2的线性范围为25~712μmol/L;检出限(S/N=3)为7.5μmol/L。此传感器制作简单,具有响应快、稳定性好、灵敏度高等特点。  相似文献   

12.
以柠檬酸和氨水为原料,用水热法制备了氮掺杂石墨烯量子点(NGQDs),与硫化镉纳米晶(CdS NCs)复合,构建了固态电化学发光(ECL)传感器,用于硫化氢(H2S)的检测。采用紫外-可见吸收光谱和荧光光谱对NGQDs和CdS NCs进行了表征,同时对传感器的ECL和电化学行为进行了系统研究。结果表明,以H2O2为CdS NCs的共反应试剂时,NGQDs可增强CdS NCs的ECL信号,并且NGQDs/CdS NCs的稳定性增加。H2S存在下,S2-与过量的Cd2+发生键合作用,ECL值降低。在最优条件下, ECL变化值与H2S浓度(2.0×10-10~2.0×10-5 mol/L)的对数呈良好的线性关系,检出限为6.7×10-11 mol/L。采用本传感器测定血清中H2S浓度,加标回收率为92.7%~103.8%。  相似文献   

13.
利用分子印迹技术与铜离子(Cu2+)配位单元为双重识别模式,使用层层自组装先将L-半胱氨酸(L-cys)通过AuS键组装到石墨烯(rGO)和金纳米粒子(AuNPs)修饰的玻碳电极表面,再将Cu-凝血酶(THR)络合物通过L-cys与Cu2+配位作用组装到电极表面,以硫堇(Tn)为聚合单体,使用电聚合法聚合得到分子印迹膜,制备了具有双重识别模式的金属离子配体-分子印迹电化学传感器。采用扫描电镜(SEM)和能谱色散仪(EDS)对复合纳米材料进行表征。利用循环伏安法(CV)、交流阻抗法(EIS)和差分脉冲伏安法(DPV)对传感器性能进行了研究,在最佳检测条件下,传感器响应与THR浓度在2.0×10-9~5.0×10-7 g/L范围内呈良好的线性关系,线性方程为-ΔI(μA)=17.73+1.84 lgc(g/L)。构建了THR分子印迹电化学传感器的动力学吸附模型,测得印迹传感器的印迹因子β=4.32,结合速率常数k=5.68 s。传感器表现出良好的稳定性和重现性,可用于实际样品中凝血酶的检测。  相似文献   

14.
制备了石墨烯量子点(GQDs)、Pt和Au纳米粒子修饰玻碳电极(GQDs/PtAu/GCE),并应用于四环素(TTC)的电化学检测。研究TTC在GQDs/PtAu/GCE上的电催化行为和反应机理。GQDs/PtAu/GCE复合电极的形貌和性质通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)、能量散射光谱(EDS)和电化学技术表征。研究结果表明,GQDs/PtAu/GCE对TTC的电化学氧化具有良好的催化行为,氧化过程出现2个阳极峰,其中高电位氧化峰较稳定。通过计算得出,TTC电催化氧化是2电子转移的催化反应,电子转移速率常数k_s为100.6/s。采用循环伏安法检测高浓度TTC,氧化峰电流与其浓度在1.0×10~(-4)~0.2 mol/L范围呈现良好的正相关性。采用安培法检测低浓度TTC,催化电流与TTC浓度呈现两段线性区间,线性范围分别为5.0×10~(-7)~3.5×10~(-5) mol/L(I_p=18.59c_(TTC)+0.0364,R~2=0.9922),4.5×10~(-5)~2.25×10~(-4) mol/L(I_p=3.368c_(TTC)+0.5744,R~2=0.9942),方法的检出限为1.5×10~(-7) mol/L。该GQDs/PtAu/GCE修饰电极具有良好的稳定性和重复性,应用于实际样品中TTC的测定,加标回收率为95.6%~105.7%。  相似文献   

15.
通过原位还原法制备还原氧化石墨烯-金纳米粒子复合材料(Au NPs@rGO),并将其应用于构建具有高灵敏度的黄芩苷电化学传感器.由于rGO大的比表面积和Au NPs良好的导电能力,两者协同作用显著提高了黄芩苷的电化学响应.采用扫描电镜及电化学方法对修饰电极及黄芩苷的电化学行为进行了深入研究.在优化条件下,其差分脉冲伏安...  相似文献   

16.
通过酸氧化法将氧化石墨烯进一步“切割”制备石墨烯量子点(GQDs),在100℃水热条件下,用氨水处理石墨烯量子点制备得到氨基功能化石墨烯量子点(N-GQDs)。傅里叶变换红外光谱证明NH3可以有效地进攻环氧基碳和羧基碳,形成羟胺和酰胺基。原子力显微镜结果表明NH3不仅能够有助于产生更小的量子点,还对石墨烯纳米片有致孔作用。氨基功能化之后,由于C-O-C相关的n-π*跃迁受到抑制,N-GQDs发光具有更弱的激发波长依赖性,并使其荧光量子产率从0.3%提高至9.6%。时间分辨发光光谱表明,相比含氧基团,含氮基团相关的局域电子激发态具有更长的荧光寿命和更弱的发射光谱依赖性。  相似文献   

17.
铂基催化剂因具有高催化活性、高稳定性而成为极其重要的能源转化催化剂。本文采用水热法合成氮掺杂石墨烯量子点支撑的钯纳米复合材料(Pd@N-GQDs),并将其用于碱性介质中甲醇的电催化氧化反应。实验结果表明,相比同类型材料钯负载于石墨烯纳米片(Pd@GS)、钯负载于石墨烯量子点(Pd@GQDs)和商业钯黑催化剂(Pd@C),Pd@N-GQDs纳米材料具有很高的催化活性和稳定性,并可减少催化剂材料中贵金属的使用量。  相似文献   

18.
石墨烯量子点的制备   总被引:1,自引:0,他引:1  
作为石墨烯家族的最新一员,石墨烯量子点(GQDs)除了具有石墨烯的优异性能,还因量子限制效应和边界效应而展现出一系列新的特性,因此吸引了化学、物理、材料和生物等各领域科学家的广泛关注。仅近两三年内,关于这种新型零维材料的研究,在实验和理论方面均取得了极大进展。本文主要介绍制备GQDs的两大类方法——自上而下和自下而上的方法。前者包括水热法、电化学法和化学剥离碳纤维法,后者则主要介绍溶液化学法、超声波法和微波法、可控热解多环芳烃法。另外还对一些制备条件较为苛刻的制备方法如电子束刻蚀法和钌催化富勒烯C60开笼法也作了简要介绍,并对GQDs的应用前景进行了展望。  相似文献   

19.
利用水热法制备了ZnO-1-丙胺基-3-甲基咪唑氯离子液体功能化的石墨烯量子点溶液,通过紫外-可见吸收光谱、红外吸收光谱和透射电镜对其进行了表征.通过研究各种因素对ZnO-离子液体功能化的石墨烯量子点的荧光发射光谱的影响,发现Cr2O72-对ZnO-离子液体功能化的石墨烯量子点有荧光猝灭现象.实验结果表明,在优化的实验条件下,pH=5.0,Cr(Ⅵ)浓度为1.0×10-7~1.6×10-6 mol·L-1时,Cr(Ⅵ)对ZnO-离子液体功能化的石墨烯量子点的荧光猝灭呈线性,其线性方程为F/F0=0.969 5-0.008 4c,R=0.998 8,检出限为7.6×10-2μmol·L-1.  相似文献   

20.
利用水合肼还原十八胺(ODA)接枝的氧化石墨烯(GO),得到了十八胺功能化石墨烯(ODA-G),将ODAG与聚苯胺(PANI)通过溶液共混法,制备了功能化石墨烯和聚苯胺纳米复合材料(ODA-G/PANI). 采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、热重分析(TGA)、拉曼(Raman)光谱及透射电镜(TEM),对复合材料的结构和形貌进行了表征;利用循环伏安、恒流充放电及交流阻抗谱等,对复合材料的电化学性能进行了测试. 结果显示,少量ODA-G的引入为PANI 的电化学氧化还原反应提供了更多的电子通道和活性位置,有利于提高PANI 的赝电容. 在电流密度1.0 A·g-1下,2%(w)ODA-G/PANI 的比电容达到787 F·g-1,而相应的PANI 仅有426 F·g-1. 此外,ODA-G/PANI的循环稳定性也远高于纯PANI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号