首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了气相色谱法测定土壤中8种有机磷农药含量的方法。样品以水为分散剂、丙酮-二氯甲烷(1+4)混合溶剂为萃取剂,经加速溶剂萃取仪在60℃静态萃取5 min。采用DB17色谱柱分离,火焰光度检测器测定有机磷农药。8种有机磷农药的检出限(3S/N)在3.0~7.2μg·L-1之间。以土壤样品为基体,进行加标回收试验,回收率在73.3%~110%之间,相对标准偏差(n=7)在5.9%~15%之间。  相似文献   

2.
建立加速溶剂萃取-QuEChERS-气相色谱质谱联用法对土壤样品中17种增塑剂进行检测.土壤样品以正己烷饱和乙腈萃取,经25 mg乙二胺-N-丙基硅烷和25 mg硅胶净化,气相色谱质谱联用法选择离子监测(SIM)模式下检测,以外标法进行定量分析.17种增塑剂在0.01~2 mg/L质量浓度内线性关系良好,各化合物相关系数均在0.999以上.方法的检出限在0.01~0.05 mg/kg之间,定量限在0.03~0.15 mg/kg之间,17种增塑剂在0.5、1.0、5.0 mg/kg添加水平下,加标回收率和精密度分别为72.8%~116.2%和1.73%~6.15%.方法简易便捷、灵敏度和准确度高,适合于检测土壤中17种增塑剂.  相似文献   

3.
以土壤中六氯环戊二烯、六氯丁二烯、六氯乙烷为研究对象,采用加速溶剂萃取法进行在线净化和萃取,用气相色谱-质谱法测定。将土壤样品10g与石英砂20g混合均匀后,加入到装有氟罗里硅土粉1g和石墨炭黑粉0.2g的萃取池中,以二氯甲烷-丙酮(4+1)混合液为萃取剂进行萃取。考察了萃取温度、萃取剂、分散剂和土壤pH、TOC等因素的影响,分析了在线净化和离线净化的差异以及复合净化的优势。应用该方法对3个不同土壤样品进行测定,回收率在72.3%~89.0%之间,相对标准偏差(n=7)为7.4%~13%。  相似文献   

4.
宋晓娟  贺心然  尹明明  万延延 《色谱》2018,36(10):1038-1044
建立了快速溶剂萃取(ASE)-气相色谱-串联质谱(GC-MS/MS)同时分析土壤中8种有机氯农药(OCPs)和5种有机磷农药(OPPs)的方法。样品由正己烷-丙酮(1:1,v/v)溶液萃取,经无水硫酸钠脱水、氮吹仪浓缩后,采用硅胶(Si)固相萃取小柱进行净化,正己烷-丙酮(1:1,v/v)溶液进行洗脱,然后经HP-5MS色谱柱(30 m×0.25 mm×0.25 μm)分离,在电子轰击电离源下以多反应监测(MRM)模式进行检测,内标法定量。分析结果表明,13种目标物在1.00~100 μg/L范围内线性关系良好,相关系数(R)大于0.995;加标回收率为66.8%~88.4%,能够实现准确定量;日内精密度与日间精密度均小于10%。当取样量为10.0 g时,8种OCPs的方法检出限为0.02~0.04 μg/kg,5种OPPs的方法检出限为0.06~0.12 μg/kg,能够满足土壤农药残留的检测要求。  相似文献   

5.
提出了气相色谱-质谱法测定固体废物中12种酚类化合物残留量的方法。样品以丙酮-二氯甲烷(2+3)混合液为萃取剂,经加速溶剂萃取仪提取后,在K-D浓缩装置上浓缩至1 mL,经硅胶柱净化后,用丙酮-二氯甲烷(1+9)混合液淋洗后再经K-D浓缩至1 mL,通过HP-5 MS石英毛细管色谱柱(30 m×0.25 mm,0.25μm)分离,采用电子轰击离子源选择离子监测模式进行质谱测定。12种酚类化合物的检出限(3S/N)在9.60~18.5μg.kg-1之间。以空白土壤样品为基体进行回收试验,测得回收率在74.7%~108.4%之间,测定值的相对标准偏差(n=7)均小于7.5%。  相似文献   

6.
建立了加速溶剂萃取/气相色谱-负化学电离质谱法测定土壤中毒杀芬的方法.在加速溶剂萃取实验条件优化的基础上,确定了最佳实验条件:系统压力12.4 MPa,萃取溶剂为正己烷-丙酮(体积比1 : 1),萃取温度100 ℃,静态萃取时间10 min,循环2次.萃取液经活性炭与弗罗里硅土复合小柱净化后,氮吹至1.0 mL,于GC-MS仪上测定.结果表明,毒杀芬的线性范围为0.3 ~3 000 ng/g(毒杀芬总量),相关系数均不小于0.999 0,方法检出限为0.10 ~1.00 ng/g,平均回收率为86% ~104%,相对标准偏差(n=7)为6.8% ~13.5%.  相似文献   

7.
建立了咸鱼中有机磷农药残留的分析方法.乙腈为溶剂,样品经ASE萃取,提取液用凝胶渗透色谱除去脂类、蛋白质和大部分的色素,再经Carb/PSA小柱净化.采用GC-MS定性分析,GC-FPD定量分析.加标水平为0.05~0.20mg/kg时,农药的回收率为64.5%~98.6%,相对标准偏差2.7%~14.7%.方法的检出...  相似文献   

8.
建立了土壤中酞酸酯类的加速溶剂萃取(ASE)―气相色谱―质谱(GC-MS)测定方法。通过对萃取溶剂和层析柱的优化选择,得出优化萃取条件。同时,实验过程中采用铬酸洗液对实验器皿进行清洗,有效控制了环境中酞酸酯对样品的污染。该优化方法结果显示:平均加标回收率为89.5%~106.0%,相对标准偏差为1.5%~5.8%,检出...  相似文献   

9.
金静  刘洪媛  薛会福  杨婧  屈春花  马慧莲  陈吉平 《色谱》2022,40(10):937-943
新污染物引发的环境和健康风险正逐步受到社会各界的广泛关注,我国第十四个五年规划和2035年远景目标纲要明确“重视新污染物治理”。作为新型的持久性有机污染物,多氯萘(PCNs)在土壤中通常处于痕量水平,一般需要经过多层硅胶柱/氧化铝柱等复杂的净化方法,再结合有效的分析手段才能实现准确测定。关注土壤中多氯萘分离分析方法可以为掌握和监管其在土壤中的污染状况提供技术和方法支持。研究以13X分子筛作为固相萃取吸附剂,评价了其对多氯萘的净化效果。研究发现:使用正己烷作为上样溶剂和淋洗剂,10 mL二氯甲烷/正己烷(2∶15,v/v)为洗脱溶剂,可以实现PCNs与脂类大分子等干扰物的选择性分离,且多氯萘内标的平均回收率为56.1%~88.0%。与凝胶渗透色谱法、弗罗里硅土固相萃取柱以及多层硅胶柱/氧化铝柱相比,13X分子筛对土壤提取液的净化效果优于前两种净化方法,可以获得与多层硅胶/氧化铝柱相近的净化效果(53.0%~117.0%),而且操作更加简单,环境更加友好,分析成本大幅度下降。在此基础之上,建立了加速溶剂萃取-分子筛固相萃取,结合气相色谱-三重四极杆质谱法测定土壤中PCNs的分析方法。PCNs同族体的方法检出限为0.009~0.6 ng/g。采用基质加标法评价了本方法的精密度和准确度,CN-3、13、42、46、52、53、73、75在低、中、高加标水平下的平均加标回收率分别为70%~128%、71%~115%和61%~114%,测定结果的相对标准偏差分别为4.2%~23%、6.5%~31%和4.7%~22%,满足痕量分析的要求且平行性较好。从整个分析流程来看,13X分子筛有望成为新污染物净化的新型固相萃取吸附剂,并在土壤新污染物普查中发挥重要作用。  相似文献   

10.
加速溶剂萃取-气相色谱法测定土壤中的有机磷农药   总被引:3,自引:0,他引:3  
采用加速溶剂萃取-气相色谱法测定土壤中有机磷农药。土壤样品与无水硫酸钠混合后,再加适量中性氧化铝和活性碳,用丙酮-二氯甲烷在加速溶剂萃取仪土于10.3MPa、60℃条件下提取10min,用FPD检测器进行分析:土壤中7种有机磷农药的回收率为85.5%~102.7%,测定结果的相对标准偏差为5.7%~13.0%(n=6),检出限为0.03~0.07μg/kg。该法具有良好的分离效果、较宽的线性关系和较高的灵敏度。  相似文献   

11.
加速溶剂萃取-气相色谱法测定土壤中的联苯菊酯   总被引:1,自引:0,他引:1  
建立了加速溶剂萃取-色谱法测定土壤中的联苯菊酯残留量的方法.土壤样品与无水硫酸钠以1∶2(质量比)混合后,再加适量中性氧化铝,用丙酮-石油醚(体积比为1∶1)在加速溶剂萃取仪上以10.3 MPa、80℃提取5 min,Florisil小柱净化,然后采用ECD气相色谱测定,在0.56、1.12 μg/kg两个添加水平下,联苯菊酯的加标回收率为72.7%~87.2%,检出限为0.1 μg/kg.测定结果的相对标准偏差为9.3%(n=8).该法能有效地消除复杂基质带来的干扰,可以作为日常样品中联苯菊酯残留量的检测和确证方法.  相似文献   

12.
加速溶剂萃取-气相色谱法测定土壤中的有机磷农药残留   总被引:30,自引:0,他引:30  
采用加速溶剂萃取法测定土壤中有机磷农药残留物。土壤样品与无水硫酸钠(1:2m/m)混合后,再加适量中性氧化铝和活性碳,用丙酮、甲醇(1:1,V/V)在加速溶剂萃取仪上以10.3Mpa、60℃提取10min,对土壤中10种有机磷农药的回收率在80.4%-113.7%之间。该法用于土壤中的有机磷农药残留测定,速度快,检出限为0.01—0.06μg/kg。  相似文献   

13.
建立了加速溶剂萃取-硅胶固相萃取净化-气相色谱/质谱同时检测地表水中15种有机氯农药(OCPs)和82种多氯联苯(PCBs)的方法.对影响OCPs和PCBs回收率的主要因素进行优化,得出最优的萃取条件:3次静态萃取循环,100℃的萃取温度,丙酮/正己烷(1∶1,V/V)为萃取液,静态萃取10 min.在最优条件下,15种OCPs和82种PCBs在加标水溶液中的回收率分别为70.9%~130%和52.5%~89.1%.日内和日间相对标准偏差分别为1.7%~16.1%和2.4% ~33.3%.OCPs和PCBs混合标样在10~ 800 μg/L范围内线性相关系数(R2)均大于0.995.OCPs和PCBs方法检测限分别为0.13 ~0.38 ng/L和0.10 ~0.32 ng/L.相比于传统萃取方法,本方法回收率高、萃取时间短、试剂用量少.应用本方法测得北京城区地表水中OCPs和PCBs的含量范围分别为n.d.~ 3.45 ng/L和n.d.~4.88 ng/L.  相似文献   

14.
建立了同时加速溶剂萃取和净化、气相色谱-离子阱二级质谱检测植物中13种有机磷酸酯阻燃剂/增塑剂的分析方法。样品放入以硅胶和活性炭作为在线净化填料的萃取池中,在萃取溶剂为正己烷-丙酮(1∶1,体积比)、萃取温度100℃、静态萃取时间10 min、循环2次的条件下进行加速溶剂萃取,萃取液浓缩后经DB-5MS(30 m×0.25 mm×0.25μm)气相色谱柱分离,选择反应监测模式(SRM)检测,以保留时间和特征离子对定性,内标法定量。结果表明,该方法具有较好的准确度和精密度,13种有机磷酸酯在3个加标水平下的回收率为76.9%~113.0%,相对标准偏差为2.0%~14.6%,方法检出限为0.79~2.27 ng/g,方法定量下限为2.65~7.59 ng/g。该方法简便、快速、准确,可用于植物中13种有机磷酸酯的测定。  相似文献   

15.
建立了加速溶剂萃取-凝胶色谱净化-气质联用同时测定土壤中15种有机氯农药的分析方法。优化了凝胶色谱(GPC)净化的条件,比较了凝胶色谱净化及浓硫酸净化法对15种有机氯回收率的影响。结果表明,采用GPC净化能够有效避免浓硫酸净化对氯丹、异狄氏剂、硫丹、甲氧滴滴涕等农药回收率的影响,GPC净化的最佳收集时间为10~15 min,15种有机氯农药的回收率为56%~122%。15种有机氯农药在0.03~6.0 mg/L范围内具有较好的线性,相关系数达0.999以上,方法的检出限为0.1~5.0μg/kg,定量下限为0.4~16.0μg/kg。采用该方法对实际样品进行加标回收率实验,土壤样品的加标回收率为68%~122%,相对标准偏差为1.2%~5.9%。该方法简单、快捷、灵敏度高,已用于实际土壤样品的检测。  相似文献   

16.
建立了地下水中1-氯萘、2-氯萘、1,4-二氯萘、1,2,3,4-四氯萘、1,3,5,7-四氯萘、1,2,3,5,7-五氯萘、1,2,3,5,6,7-六氯萘、1,2,3,4,5,6,7-七氯萘和八氯萘9种多氯萘(PCNs)的气相色谱-质谱(GC-MS)分析方法。对比研究了液液萃取(LLE)和固相萃取(SPE)萃取地下水中PCNs的提取效率,优选二氯甲烷-液液萃取为PCNs检测的前处理方法。在优化条件下,9种PCNs的线性范围为5~100μg/L,各组分的相关系数(r)大于0.995,方法检出限(S/N=3)为4.21~7.41 ng/L,地下水的平均加标回收率为70.7%~112%,相对标准偏差(RSD,n=5)均小于9.9%。该方法已用于地下水样中多氯萘的检测。  相似文献   

17.
建立快速溶剂萃取–气相色谱质谱法测定土壤中戊唑醇残留量的分析方法。土壤样品经ASE–350快速溶剂萃取仪萃取,萃取液用硅酸镁(弗罗里硅土)柱净化浓缩,然后用选择离子监测/全扫描(SIM/SCAN)模式,气相色谱–质谱法测定土壤中的戊唑醇含量。该方法检出限为0.008 mg/kg,加标回收率为84.0%~97.5%,测定结果的相对标准偏差为2.2%~11.6%(n=6)。该方法具有分离效果好,灵敏度高,重现性好,前处理操作简便等优点,可用于测定土壤中戊唑醇的残留量。  相似文献   

18.
建立了高效溶剂萃取(HPSE)-固相萃取(SPE)/气相色谱-质谱(GC-MS)测定大气颗粒物中16种多环芳烃(PAHs)和15种有机磷阻燃剂(OPFRs)的方法。以正己烷-二氯甲烷(1∶1,体积比)溶液为萃取溶剂,萃取液旋转蒸发浓缩后经Florisil固相萃取柱净化,PAHs和OPFRs的洗脱溶剂分别为10 mL正己烷-二氯甲烷(1∶1)和10 mL乙酸乙酯,洗脱液浓缩定容后进行GC-MS测定。16种PAHs和15种OPFRs的线性范围为0.001~2.0μg/mL,相关系数(r2)均大于0.99;检出限(LOD,S/N=3)分别为0.10~10.00μg/L和2.59~75.00μg/L,定量下限(LOQ,S/N=10)分别为0.33~33.33μg/L和8.63~250.00μg/L;平均回收率分别为73.0%~98.0%和69.3%~111%,相对标准偏差(RSD)分别为3.7%~13%和2.5%~17%。该方法适用于大气颗粒物样品中多环芳烃和有机磷阻燃剂的测定。  相似文献   

19.
建立了污泥、底泥及土壤样品中7种合成麝香的分析方法.采用加速溶剂萃取(ASE)提取,经硅胶/中性氧化铝复合层析柱净化后,浓缩并定容洗脱液,用GC-SIM-MS进行检测.本方法对替代物标样荧蒽-d10的回收率为89.7%~110.9%.以六氯苯-c13为内标,7种合成麝香的线性范围为0.6~100.0 μg/kg.底泥和土壤中麝香的检出限为0.25~0.33 μg/kg(S/N=3); 污泥中的检出限为2.9~3.3 μg/kg(S/N=3).基质加标回收实验的平均回收率为83.6%~105.1%; RSD为3.2%~9.8%.本方法准确、快速,可用于实际样品的检测.  相似文献   

20.
建立了加速溶剂萃取(ASE)/气相色谱-三重四极串联质谱(GC-MS/MS)测定土壤中灭蚁灵、顺式得克隆、反式得克隆、得克隆602、得克隆603、得克隆604及反式得克隆脱氯产物(anti-Cl10DP、anti-Cl11DP) 8种超痕量新型高氯代阻燃剂的分析方法。样品经ASE在120℃条件下使用正己烷-丙酮(体积比1∶1)混合溶剂提取,石墨碳黑在线净化、GCB/PSA固相萃取柱进一步净化,采用质谱多反应监测(MRM)模式检测。结果显示,方法线性范围为3个数量级,8个目标物在低、中、高3个浓度水平土壤基质中的加标回收率为93. 8%~107%、84. 7%~101%、99. 0%~108%,相对标准偏差为5. 1%~13%、5. 2%~8. 3%、4. 3%~6. 6%,方法检出限为0. 17~11. 0 pg/g。将该方法应用于京杭大运河沿线部分城区、农村表层土壤中8种得克隆类化合物测定,发现顺式得克隆、反式得克隆、得克隆602和灭蚁灵4种目标物检出率较高,可达35. 0%以上,其中得克隆产地淮安市土壤中顺式得克隆和反式得克隆最高含量分别达到6. 50 ng/g和24. 4 ng/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号