首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 80 毫秒
1.
利用X射线荧光光谱检测土壤重金属砷、锌、铅和铬元素的含量。通过分析仪器检出限和准确度,得出仪器适用性良好。然后,利用二维相关同步光谱获得重金属元素的X射线荧光光谱能谱范围和变量数,得出铅元素的能谱范围分别为10.380~10.740和12.435~12.900 keV,砷元素的能量范围是10.380~10.740和11.610~11.880 keV,铬元素的能量范围是5.310~5.520和5.805~6.015 keV, 锌元素的能量范围是8.520~8.805和9.555~9.630 keV,铅、砷、铬和锌的变量数分别为57,44,30和26。最后,根据获得的能谱范围,采用偏最小二乘回归方法建立重金属元素的X射线荧光光谱定量分析模型,得出砷元素的模型性能最佳,其次是铅、锌和铬,预测相关系数都高于0.92。研究表明,利用二维相关光谱获得的能谱范围有助于提高模型的预测性能和便携式X射线荧光光谱检测仪器适用于土壤重金属的原位监测。  相似文献   

2.
使用FLS920P型荧光光谱仪测量了20个合成色素胭脂红溶液样本的荧光发射谱,实验表明:胭脂红的最佳激发波长为300 nm,在此波长激发光下,荧光峰值波长为440 nm。同时测量相同条件下超纯水的光谱数据作为参考光谱,进行与胭脂红溶液光谱数据的相关计算,构建以浓度为外扰的荧光相关光谱。采用sym8小波函数4尺度降噪,将降噪后的同步相关光谱数据、自相关光谱数据应用偏最小二乘回归(PLSR)算法进行预测,建立溶液中胭脂红含量的定量模型,结果表明:采用同步相关光谱建模的预测相关系数为99.863%,预测均方根误差为0.414 μg·mL-1;而采用自相关光谱建模的预测相关系数为99.940%,预测均方根误差为0.303 μg·mL-1。对比可知,自相关光谱数据有效地避免了信息冗余,预测结果更为可靠。该方法无需样本处理,操作简单,为食品安全检测提供了一种新的思路。  相似文献   

3.
近红外高光谱图像结合CARS算法对鸭梨SSC含量定量测定   总被引:3,自引:0,他引:3  
高光谱数据量大、 维数高且原始光谱噪声明显、 散射严重等特征导致光谱建模时关键波长变量提取困难。 基于此,提出采用竞争性自适应重加权算法(CARS)对近红外高光谱数据进行关键变量选择。 鸭梨作为研究对象。 采用决定系数r2、 预测均方根误差RMSEP和验证集标准偏差和预测集标准偏差的比值RPD值进行模型性能评估。 基于选择的关键变量建立PLS模型(CARS-PLS)与全光谱变量建立的PLS模型进行比较发现CARS-PLS模型仅仅使用原始变量中15.6%的信息获得了比全变量PLS模型更好的鸭梨SSC含量预测结果,r2pre,RMSEP和RPD分别为0.908 2,0.312 0和3.300 5。 进一步与基于蒙特卡罗无信息变量MC-UVE和遗传算法(GA)获得的特征变量建立的PLS模型比较发现,CARS不仅可以去除原始光谱数据中的无信息变量,同时也能够对共线性的变量进行压缩去除,该方法能够有效地用于高光谱数据变量的选择。 结果表明,近红外高光谱技术结合CARS-PLS模型能够用于鸭梨可溶性固形物SSC含量的定量预测。 从而为基于近红外高光谱技术预测水果内部品质的研究提供了参考。  相似文献   

4.
饶利波  陈晓燕  庞涛 《发光学报》2019,40(3):389-395
可溶性固形物含量是判断苹果内部品质的重要参考属性之一。利用高光谱技术获取苹果感兴趣区域的反射光谱,以S-G平滑(Savitzky-Golay smoothing)和直接正交信号校正(Direct orthogonal signal correction, DOSC)算法对光谱数据进行梯度预处理后,用后向区间偏最小二乘法(Bipls)优选出3,5,6,7,8,9,13,14,15,16,17,18,19,20,21,23等16个子区间,共计177个波长。结合竞争自适应重加权采样算法(CARS)再作进一步筛选,提取出449.6,512.9,544.8,547.2,594.3,596.8,928.2 nm等7个特征波长,利用偏最小二乘算法(PLS)建立基于特征波长的可溶性固形物含量检测模型,所得模型评价为R_c=0.906 2,RMSEC为0.482 2,R_p=0.871 6,RMSEP为0.614 0。该算法模型预测性能同Bipls和Bipls-SPA模型相比更为优异,证明了Bipls结合CARS算法在提高苹果可溶性固体物含量检测精度方面的有效性。  相似文献   

5.
不同粒径对土壤有机质含量可见—近红外光谱预测的影响   总被引:1,自引:0,他引:1  
土壤有机质(SOM)是表征土壤肥力的重要指标,实现其快速准确检测可为精准农业区域管理提供有效的数据支撑。土壤粒径对SOM 的光谱预测及仪器开发有很大的影响,为了明确不同粒径对 SOM 预测的影响,分别制备了1~2,0.5~1,0.25~0.5,0.1~0.25和<0.1mm 五种均匀粒径及<1mm 混合粒径共计6种粒径土样并进行了可见-近红外(300~2 500nm)光谱数据采集。采用蒙特卡罗交叉验证分别剔除了不同粒径的异常样本,结合Savitzky-Golay卷积平滑法对光谱数据进行平滑去噪处理,比较了不同粒径样品的光谱反射率差异,并对平滑后的原始光谱 R进行倒数IR、对数 LR、一阶导数 FDR等3种光谱变换并分析与SOM 含量的相关性,基于竞争性自适应重加权算法(CARS)对光谱数据进行了特征波长提取,并结合偏最小二乘回归(PLSR)分别建立了相应的SOM 含量预测模型。结果表明,不同粒径土样的平均光谱反射率与变异系数随着粒径的减小逐渐增加,且在大于540nm 波长范围内,差异明显。随着粒径的减小,SOM含量与光谱反射率在全波段范围的相关性变化幅度愈加明显,FDR 变...  相似文献   

6.
7.
近红外光谱具有高维小样本的特点,变量选择是提高定量分析模型稳健性和可解释性的一种有效方法。确定独立筛选(SIS)是一种基于边际相关性的超高维数据变量选择方法,广泛用于基因微阵列数据的变量选择。SIS具有将数据维度降低至样本大小规模的能力,其降维能力与LASSO相当,在相当宽泛的近似条件下,由于具有安全筛选性质,所有重要变量被保留的概率趋于1。基于确定独立筛选偏最小二乘(SIS-SPLS)的变量选择是一种迭代式的SIS变量选择方法,首先利用SIS方法完成光谱重要变量的初选;然后根据重要变量的边际相关性大小进行逐步前向选择:建立偏最小二乘回归模型,依据贝叶斯信息准则(BIC)确定最终的变量选择结果。SIS-SPLS以逐步前向选择的方式实现对重要变量的增量式筛选,随着潜变量个数的增加及因变量残差的逐步减小,SIS-SPLS方法选择的变量个数将趋于稳定。然而仅以边际相关性对变量重要性进行评价,当光谱变量个数远大于样本数时,该方法也存在选择的变量过多、变量选择结果不够稳健等问题。为进一步提高小样本情况下变量选择的稳健性,将集成学习引入SIS-SPLS方法之中,提出了一种集成SIS-SPLS变量选择方法(Ensemble-SISPLS)。该方法首先对校正集样本进行自助重采样,对采样得到的每一个校正子集分别使用SIS-SPLS方法进行变量筛选,通过投票机制并设置频次阈值对所有校正子集的变量选择结果进行集成,选择出现频次大于给定阈值的变量并建立偏最小二乘回归模型,计算5折交叉验证均方根误差。对频次阈值和潜变量个数两个关键参数使用网格搜索法进行优选,根据子模型的交叉验证均方根误差和变量个数对子模型性能进行综合评价,以最优子模型包含的变量作为最终的变量选择结果。分别在Corn数据集和当归数据集上进行变量选择实验,比较Ensemble-SISPLS,SIS-SPLS和UVE-PLS三种变量选择方法的性能。其中当归数据集共77个样本,样本采自甘肃岷县和渭源县,使用Nicolet-6700型近红外光谱仪扫描得到所有样本的近红外光谱并对当归中的阿魏酸含量进行预测。Ensemble-SISPLS方法在Corn数据集上选择的变量个数、RMSEP和决定系数分别为22,0.000 8和0.999 8;SIS-SPLS方法在Corn数据集上选择的变量个数、RMSEP和决定系数分别为97,0.007 3和0.998 8。Ensemble-SISPLS方法在当归数据集上选择的变量个数、RMSEP和决定系数分别为24,0.018 1和0.996 3;SIS-SPLS方法在当归数据集上选择的变量个数、RMSEP和决定系数分别为38,0.022 6和0.994 3。结果表明,该方法进一步提高了变量选择结果的稳健性和预测能力。Ensemble-SISPLS变量选择方法有效结合了SIS-SPLS较强的变量选择能力和集成学习良好的泛化能力,提高了变量选择的稳健性。此外,由于在子模型的预测能力和变量个数之间进行了折中,一定程度上减少了选择变量的个数,提高了模型的可解释性。  相似文献   

8.
X射线荧光光谱微区分析法既有X射线荧光光谱法快速、简便、无损检测等特点,又可对保健食品表面的元素分布进行检测,电感耦合等离子体质谱法具有检出限低、线性范围宽、多元素同时测定等优点,旨在建立一种X射线荧光光谱微区分析法和电感耦合等离子体质谱法联合测定保健食品中元素种类、分布及含量的方法.利用X射线荧光光谱微区分析技术对一...  相似文献   

9.
土壤重金属的污染影响着农作物的产量和质量。传统的土壤重金属检测方法步骤繁琐、检测费用高且速度慢。利用X射线荧光光谱(XRF)分析技术检测土壤中重金属含量,具有处理简单、现场、快速、无损等优点。由于土壤背景复杂,包含大量噪声和无关信息,建立XRF校正模型前,对光谱的预处理能有效的去除不相干信息,保留有用信息,对XRF预测模型的精度有重要影响。主要研究光谱预处理方法对重金属含量预测模型精度的影响。首先,采用向前间隔偏最小二乘(FiPLS)作为校正模型,对比了无预处理、去趋势处理(DT)、标准正态变量变换(SNV)、多元散射校正(MSC)、小波去噪(WT)、SNV+DT、卷积平滑(SG)+一阶导数、卷积平滑(SG)+二阶导数等7种不同预处理条件下的土壤重金属模型的检测精度。初步结果表明,多元散射校正预处理方法效果较好,与原始光谱相比,相关系数r从原始的0.988提高到0.990,预测均方根误差RMSEP、相对误差平均从原来的20.809和0.166分别降低到19.051和0.121。其次,在多元散射校正预处理方法的基础上,针对多元散射校正方法以线性表达式描述非线性关系的局限性,提出了局部加权线性回归多元散射校正(LWLRMSC)和偏最小二乘多元散射校正(PLSMSC),并比较了它们的建模效果。LWLRMSC是基于加权思想,在预测一个点的值时,选择适当的核函数和权重分配策略进行预测点的线性回归,来解决简单线性回归的欠拟合状况;PLSMSC是基于PLS建模思想,考虑了自变量和因变量的最大相关性,来减少拟合误差及失真问题。结果表明,PLSMSC具有最佳的预处理效果,五种重金属Cu,Zn,As,Pb,Cr预测值和实际值的R分别为0.989,0.973,0.991,0.989和0.986,RMSEP分别为8.805,58.360,7.671,12.549和20.851,相比于传统的MSC方法不仅在精度方面有大幅度的提升,且具有更好的泛化性能,能消除光谱噪声,提升有效信息贡献度,为土壤重金属含量预测模型选取合适的预处理方法提供了理论支撑。  相似文献   

10.
应用可见-近红外光谱技术进行定量分析时,变量选择起着十分重要的作用。不同土壤样品之间的预测机制可能存在很大差异,当待测样品出现新的特征信息时,基于建模集选择的特征变量不一定能够很好地代表待测样品的有效信息,继续采用原有特征变量建模就易导致预测误差增大。该研究采用递归变量选择方法在预测过程中递归更新土壤全氮与有机质的特征变量,以保持预测模型的鲁棒性;比较了偏最小二乘法(PLS),递归偏最小二乘法(RPLS)和不同递归变量选择方法,如: 变量投影重要性与RPLS相结合(VIP-RPLS), VIP-RPLS, 无信息变量消除法与PLS相结合(UVE-PLS)对于土壤全氮与有机质含量的预测效果。所用195份土壤样品来自浙江省文成县8个乡镇的农田。土壤样品随机分成两部分,一部分作为建模集包含120份样品,另一部分作为预测集包含75份样品。结果表明: VIP-RPLS建立的模型对于预测土壤全氮与有机质含量取得了最优的结果,获得的决定系数(R2)分别为0.85与0.86,获得的预测相对分析误差(RPD)分别为2.6%与2.7%。说明VIP-RPLS通过不断更新模型的特征变量,能够捕获新加入到建模集样品的有效信息。相比于本研究中的其他方法,VIP-RPLS对于土壤全氮与有机质含量具有更高的预测精度。  相似文献   

11.
FPXRF——偏最小二乘法定量分析土壤中的铅含量   总被引:3,自引:0,他引:3  
在实验室条件下,利用NITON XLt920型便携式X射线荧光光谱(field portable X-ray fluorescence,FPXRF)仪获取土壤样品的X射线荧光光谱数据,并采用偏最小二乘法(PLS)建立土壤Pb含量的预测模型。模型所用的光谱范围为与土壤中Pb元素密切相关的两个波段:10.40~10.70 keV和12.41~12.80 keV;最佳主成分数为6。模型经交互验证,其预测结果与实测值之间的相关系数为0.966 6,预测均方根误差(RMSEP)为0.873 2。另外为了与偏最小二乘法做比较,还分别利用仪器直接获取的Pb含量读数以及X射线荧光光谱数据中Pb的线的强度与ICP测定值进行一元线性和多元线性回归,相关系数分别为0.680 5和0.730 2,均低于PLS模型的预测结果。研究表明,相比较传统的原子吸收等测试方法,便携式XRF仪在保证一定测试精度基础上,具有方便、快速、无损和耗费少等优势,可作为进一步分析前有力的筛选手段。  相似文献   

12.
刘津  孙通  甘兰萍 《发光学报》2018,39(5):737-744
利用共线双脉冲激光诱导击穿光谱(LIBS)技术对溶液中的倍硫磷含量进行定量检测研究。采用石墨对倍硫磷溶液进行富集,利用双通道高精度光谱仪获取样品的LIBS光谱。以碳元素谱线(CⅠ247.856 nm)为内标对210~260 nm波段谱线进行校正,然后利用竞争性自适应重加权算法(CARS)筛选与倍硫磷相关的重要波长变量,最后应用最小二乘支持向量机(LSSVM)建立倍硫磷含量的定标模型,并与基本定标法及内标法建立的单变量定标模型进行比较。研究结果表明,共线双脉冲LIBS技术可以用于溶液中的倍硫磷含量检测。基本定标法建立的最优定标模型的拟合度R2为0.935 04,预测集样品的平均预测相对误差(PRE)为41.50%;内标法建立的最优单变量定标模型的拟合度R2为0.993 61,预测集样品的平均PRE为14.91%;内标-CARS-LSSVM定标模型的拟合度R2为0.998 6,预测集样品的平均PRE为8.06%。对比上述3类定标模型,内标-CARS-LSSVM定标模型性能最优,内标法建立的定标模型次之,而基本定标法建立的定标模型最差。由此可知,CARS方法可以有效筛选倍硫磷相关的重要变量,内标法结合CARS及LSSVM方法可以改善定标模型性能,提高预测精度。  相似文献   

13.
基于GA和CARS的真空包装冷却羊肉细菌菌落总数高光谱检测   总被引:1,自引:0,他引:1  
在光谱建模过程中,采用不同的变量筛选算法进行光谱特征波段的提取已成为提高模型效果的重要方法。以真空包装的冷却羊肉细菌菌落总数作为研究指标,比较了两种变量筛选算法对其高光谱偏最小二乘(partial least squares, PLS)模型效果的影响。研究提取了样品肌肉感兴趣区域(ROIs)的羊肉光谱并进行预处理,进而采用遗传算法(genetic algorithm, GA)和竞争性自适应重加权法(competitive adaptive reweighted sampling, CARS)分别对预处理后的473~1 000 nm范围光谱进行特征波段的提取,对比分析了不同波段下羊肉细菌菌落总数的GA-PLS, CARS-PLS和全波段PLS(W-PLS)模型效果。结果表明,GA-PLS和CARS-PLS的模型效果均优于W-PLS,且CARS-PLS模型效果最好,其校正集的决定系数(R2c)和均方根误差(root mean square error, RMSEC)分别为0.96和0.29,交互验证的决定系数(R2cv)和均方根误差(root mean square errorof cross validation, RMSECV)分别为0.92和0.46,预测集的决定系数(R2p)和均方根误差(root mean square error of prediction, RMSEP)分别为0.92和0.47,预测相对分析误差(relative prediction deviation, RPD)为3.58。因此利用高光谱图像技术结合CARS-PLS可以实现羊肉细菌菌落总数快速无损准确检测。  相似文献   

14.
运用PLS算法由小麦冠层反射光谱反演氮素垂直分布   总被引:7,自引:3,他引:7  
文章提出了利用遥感光谱数据反演小麦冠层氮素垂直分布的化学计量学方法,运用偏最小二乘算法(PLS),穷尽测定的小麦田间冠层可见光和近红外光谱不同波长处的冠层光谱反射率及其组合与小麦不同层次的叶绿素、叶片全氮含量之间的关系。通过2001~2002年的建模和2003~2004年的验证试验,求得了用PLS算法对叶片全氮上层、中层、下层垂直分布估算结果的相关性。表明PLS算法能够用于反演作物冠层生物化学参数的垂直分布。运用PLS的小麦氮素垂直分布的估算方法,较以往单一冠层估算方法精度明显提高,对于生产上迫切需求对作物中、下层叶片氮素状况的监测来指导适时和适量施肥具有指导意义。  相似文献   

15.
在碱性条件下,芦丁和维生素C对鲁米诺-铁氰化钾化学发光体系具有显著的抑制作用,但两者峰值出现的时间存在明显差异。基于这一特点,本文将偏最小二乘法与流动注射化学发光法结合,建立了偏最小二乘法-流动注射化学发光同时检测芦丁和维生素C的新方法。在优化实验条件下,发光强度ΔI与芦丁浓度和维生素C质量浓度在0.02~0.6 mg·L-1和0.1~20 mg·L-1范围内呈线性关系,检出限分别为4.5 μg·mL-1和8.9 ng·mL-1(信噪比为3)。经实际测定复方芦丁片和人体尿液中芦丁和维生素C的含量表明,该方法具有灵敏度高、分析速度快及操作简便等优点,适合用于药品及生物样品等复杂样品中芦丁和维生素C的测定。  相似文献   

16.
X射线荧光光谱法快速分析苹果酸·柠檬酸钙中的总钙   总被引:1,自引:0,他引:1  
熊敏 《光谱学与光谱分析》2006,26(11):2157-2158
文章以粉末压片法制样,顺序式单道X射线荧光光谱仪测定苹果酸·柠檬酸钙中的总钙, 方法快速准确简捷,完成一个样品制备和分析只需10 min;文章还进行了火焰原子吸收光谱法的对比试验, 阐述了两法各自的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号