首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 90 毫秒
1.
连续小波变换定量反演土壤有机质含量   总被引:3,自引:0,他引:3  
以北京市东部地区96个潮土土样的土壤参数及对应光谱数据为数据源,采用连续小波多尺度分析处理与分析。首先将土壤光谱进行初步处理,生成小波系数,其次将土样的有机质含量与小波分解系数开展相关性分析,提取特征波段,最后采用特征波段建立预测耕层有机质含量的模型。结果表明:经连续小波处理后,光谱对耕层有机质含量的预测能力明显优于传统光谱变换技术;经连续小波分解后,对土壤有机质含量的预测能力随光谱分辨率降低呈先降后升再降的趋势;连续小波分析算法可提升土壤光谱对有机质含量的估测能力,与土壤高光谱反射率相比,基于连续小波变换的土壤有机含量最佳的精度提高19%;由于光谱分辨率为80 nm建立的模型精度较高,其R2达到0.632,这表明在连续小波算法下,光谱分辨率较低的宽波段数据可用于土壤有机质含量的监测。  相似文献   

2.
高光谱小波能量特征估测土壤有机质含量   总被引:3,自引:0,他引:3  
章涛  于雷  易军  聂艳  周勇 《光谱学与光谱分析》2019,39(10):3217-3222
土壤高光谱在采集过程中难以避免噪声干扰,造成高光谱数据信噪比较低,影响土壤有机质含量估测精度。尝试探究小波能量特征方法,降低高光谱噪声,提升土壤有机质含量高光谱估测模型性能。选取湖北省潜江市运粮湖管理区为试验区,于2016年9月采集80份深度为0~20 cm的水稻土样本;土壤样本经风干、碾磨、过筛等一系列处理后,在实验室内采集样本光谱,并通过重铬酸钾-外加热法测定土壤有机质含量;利用浓度梯度法,将总体样本集(80个样本)划分为建模集(54个样本)和验证集(26个样本);以mexh为小波基函数进行连续小波变换(continuous wavelet transformation),将土壤高光谱转换为10个分解尺度的小波系数(wavelet coefficients);逐尺度计算小波系数的均方根作为小波能量特征(energy features),将10个尺度的小波能量特征组成小波能量特征向量(energy features vector);逐尺度逐波长计算小波系数与有机质含量的相关系数,将达到极显著水平(p<0.01)的小波系数作为敏感小波系数(sensitive wavelet coefficients);利用主成分分析法(principal component analysis)分别计算土壤高光谱和小波能量特征向量的各主成分载荷,通过比较两者第一主成分贡献率的高低和两者前三个主成分得分的空间离散程度,判断小波能量特征转换前后建模自变量的主成分信息变化趋势;基于小波能量特征向量和敏感小波系数分别建立多元线性回归和偏最小二乘回归土壤有机质含量估测模型。结果表明,土壤有机质含量越高,全波段反射率越低,但不同土样的光谱反射率曲线特征相似,近红外部分的反射率(780~2 400 nm)高于可见光部分(400~780 nm);敏感小波系数对应的波长为494,508,672,752,1 838和2 302 nm;土壤高光谱与小波能量特征向量的第一主成分贡献率分别为96.28%和99.13%,小波能量特征向量的前三个主成分散点较土壤高光谱的主成分散点在空间上更为聚集,表明小波能量特征方法有效减少了噪声影响;比较全部土壤有机质含量估测模型,以小波能量特征向量为自变量的多元线性回归模型具有最佳估测精度,其验证集决定系数(R2)、相对估测误差(RPD)和均方根误差(RMSE)分别为0.77,1.82和0.82。因此,小波能量特征方法既能够提高数据的信噪比,提升土壤有机质含量的估测精度,又实现了土壤高光谱数据降维,降低了模型复杂度,可用于土壤有机质含量快速测定和土壤肥力动态监测等研究。  相似文献   

3.
连续小波变换高光谱数据的土壤有机质含量反演模型构建   总被引:9,自引:0,他引:9  
土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方法建立适用于不同地域和不同土壤类型的有机质含量的反演模型。该研究在实验室内利用ASD FS3采集了土壤高光谱数据,采用“重铬酸钾-外加热法”测得了土壤有机质含量;分析了土壤原始光谱反射率(R)与有机质含量的相关性,选取R2>0.15的敏感波段的反射率;利用CWT对土壤原始光谱反射率(R)、光谱反射率的连续统去除(CR)进行不同尺度的分解,分析小波系数与土壤有机质含量的相关性,选取R2>0.3的敏感波段的小波系数;利用R选取的波段信息和R-CWT,CR-CWT的选取的小波系数,分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机回归(SVMR)三种不同的土壤有机质含量反演模型。结果表明:相比R与土壤有机质含量的决定系数R2,R-CWT,CR-CWT变换后得到的小波系数与土壤有机质含量的决定系数R2分别提高了0.15和0.2左右;CR-CWT-SVMR的模型效果最为显著,预测集的R2和RMSE分别为0.83,4.02,RPD值为2.48,具有较高的估测精度,能够全面稳定地估算土壤有机质含量;CR-CWT-PLSR的模型精度与CR-CWT-BPNN,CR-CWT-SVMR相比虽有一定差距,但是其计算量要明显小于非线性的BPNN和SVMR方法,具有模型简单、运算速度快等特点,对开发与设计田间传感器具有较大的应用价值。  相似文献   

4.
传统光谱变换与连续小波耦合定量反演潮土有机质含量   总被引:2,自引:0,他引:2  
以北京地区的96个潮土土样的有机质含量为研究对象,以传统光谱变换为参照,研究分析传统光谱变换与连续小波的耦合在估测土壤有机质含量的可行性;首先采用传统光谱变换与连续小波处理土壤光谱数据,然后将处理后的光谱数据与土壤有机质含量进行相关性分析,提取敏感波段,并采用偏最小二乘法构建土壤有机质含量估测模型。结果表明:耦合传统光谱变换技术与连续小波技术可大幅提升光谱对有机质含量的敏感性,其相关系数R2最高可达0.714,这表明耦合传统光谱变换技术与连续小波技术可深入挖掘光谱内的有益信息;与传统光谱变换技术相比,基于耦合传统光谱变换技术与连续小波技术构建的模型精度更高,稳定性更好,其中以微分变换构建的模型最优,其R2=0.772,RMSE=0.223,这表明耦合传统光谱变换技术与连续小波技术可有效压制噪声的负面影响,提升光谱的稳定性。  相似文献   

5.
二进制小波技术定量反演北方潮土土壤有机质含量   总被引:1,自引:0,他引:1  
为从土壤光谱中提取土壤有机质的光谱响应信息,提升土壤有机质含量诊断精度与可靠性,以潮土有机质含量为研究对象,以北京市区域的96个耕层土壤参数与高光谱数据为数据源开展研究分析;先采用二进制小波技术将土壤光谱数据分离为5个尺度的高频数据与低频数据,再将低频数据、高频数据分别与土壤有机质实测数据进行相关性分析,提取最佳波段组合,构建有机质含量诊断模型。结果表明:(1)二进制小波技术可抑制噪声对高频信息的干扰,能有效提升光谱对土壤有机质含量的敏感性,进而提升有机质含量的诊断精度与可靠性;(2)在二进制小波技术下,高频信息对有机质含量的诊断能力明显优于低频信息,低频信息对土壤有机质含量的诊断能力随尺度增加而降低,高频信息随尺度增加呈先提升而后降低的趋势;(3)与数学方法相比,基于二进制小波变换算法构建的模型精度较高,稳定性较好,其最优模型的预测精度提高了31.5%,可靠性增加了10.5%。  相似文献   

6.
渭干河-库车河三角洲绿洲盐渍化地地物光谱数据分析   总被引:5,自引:0,他引:5  
地物波谱特性是遥感技术应用的物理基础,是遥感定量分析的基础,地物波谱研究是遥感基础研究的重要内容,文章以新疆塔里木盆地北缘渭干河-库车河三角洲绿洲为研究区,采用美国CID公司生产的CI700便携式野外光谱仪,通过大量的野外调查以及实地测点,分析了该绿洲盐渍化地区的几种典型地物(盐碱地、细沙地、沙丘、棉花地等以及柽柳、骆驼刺、芦苇等)的光谱特性及其变化规律,尤其是对盐渍化地和盐生植被的光谱曲线的差异做出了分析,并根据实际情况,采用移动平均法去噪进行了噪声去除,分析实测光谱数据噪声特征。同时利用导数光谱技术清除植被环境背景影响。最后,为了今后继续研究的方便,在对实测光谱数据进行处理的基础上,利用ENVI软件建立了小型的渭干河-库车河三角洲绿洲主要地物的光谱库,该库可以为渭-库绿洲的地物调查,植被调查、植被分类和环境监测等遥感应用服务。  相似文献   

7.
与传统检测方法相比,利用高光谱技术进行土壤有害元素砷含量的估算,具有快速、准确,成本低的特点,可对干旱区绿洲土壤有害元素砷污染进行动态监测。基于新疆渭干河-库车河三角洲绿洲耕层土壤样品的采集,获取土壤光谱数据和有害元素砷含量。通过bior1.3,db4,gaus4和mexh这4种小波基函数对土壤原始光谱反射率进行连续小波变换,并将变换后光谱数据与有害元素砷进行相关分析,以筛选出的敏感小波系数为自变量,采用偏最小二乘回归、支持向量机回归、BP神经网络和随机森林回归方法对有害元素砷含量进行高光谱反演。研究结果显示:(1)4种小波基函数在3~8尺度的光谱分解效果明显优于其他尺度,特别是4~6尺度的连续小波变换有效提升了光谱反射率与土壤有害元素砷之间的相关性,通过显著性检验的小波系数数量有了明显增多(p<0.01),在可见光的400~700 nm以及近红外的1 100~1 700和2 200~2 400 nm附近具有较强的相关性;(2)通过比较4种小波基函数对光谱数据中有效信息的辨识能力,认为小波基函数bior1.3和mexh要优于db4和gaus4,其中bior1.3的光谱分解效果最好,gaus4相对最弱;通过bior1.3第5尺度的光谱变换,与土壤有害元素砷显著相关的波段数量最多,为507个(p<0.01);(3)比较4种建模方法的反演结果发现,SVMR,BPNN和RFR模型相较于PLSR模型具有更强的估测能力,模型的估测精度更高。综合分析各模型的稳定性及估测精度后,认为bior1.3-25-RFR模型可作为研究区土壤有害元素砷的最佳估测模型。该模型的训练集和验证集的R2分别为0.893和0.639,RMSE为1.075和1.651 mg·kg-1,RPD分别为2.89和1.64,表明模型估测效果较好,稳定性较强。采用合适的小波基函数进行连续小波变换可减少土壤高光谱数据中的白噪声,挖掘出土壤光谱数据中的有效信息,对土壤有害元素砷含量的准确估测提供有力的技术保障。  相似文献   

8.
高光谱技术联合归一化光谱指数估算土壤有机质含量   总被引:4,自引:0,他引:4  
随着近地高光谱遥感技术的发展,为快速、有效、非破坏性地获取土壤有机质(SOM)信息提供了可能。土壤高光谱波段数据众多,光谱数据变量之间存在较为严重的多重共线性,影响模型复杂结构,而构建归一化光谱指数(NDSI)可以有效去除冗余信息变量,放大光谱特征信息。以江汉平原公安县为研究区,采集56份耕层土样,在室内获取土壤光谱数据,采用“重铬酸钾-外加热法”测定SOM含量,对实测土壤光谱数据(Raw)进行倒数之对数(LR)、一阶微分(FDR)和连续统去除(CR)三种变换,计算四种变换的NDSI数值,分析SOM与NDSI的二维相关性,并对一维、二维相关系数进行全波段范围内的p=0.001水平上显著性检验,提取敏感波段和敏感光谱指数,结合偏最小二乘回归(PLSR)建立SOM的估算模型,探讨二维光谱指数用于建模的可行性。研究表明,二维相关系数相比一维相关系数有不同程度的提升,以LR最为显著,相关系数数值提升约0.26;基于二维相关性分析提取的敏感光谱指数的PLSR建模效果整体优于一维相关性分析提取的敏感波段,其中,NDSILR-PLSR模型的稳健性最优,验证集R2为0.82,模型验证RPD值为2.46,模型稳定可靠,可以满足SOM的精确监测需要,适合推广到区域范围内低分辨率的航空航天遥感(如ASTER,Landsat TM等),应用潜力较大。  相似文献   

9.
基于高光谱的土壤有机质含量估算研究   总被引:21,自引:0,他引:21  
高光谱遥感技术以其光谱分辨率高、波段连续性强、数据丰富的特点,因而在土壤养分研究中得到广泛应用.通过土壤钉机质的高光谱遥感分析,可以充分了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供科学依据.本文基于江西省余江县和泰和县采集的34个红壤土样350~2 500 nm波段的光谱曲线,研究了土壤光谱与土壤有机质含量之间的关系.先对土壤反射率光谱进行两种变换:一阶微分(R')、倒数的对数log(1/R),然后在提取特征吸收波段的基础上,运用多元逐步线性回归法和偏最小二乘回归法建立相应的估算模型,并对模型进行检验.结果表明,偏最小二乘回归法优于多元逐步线性回归法,其建立的高光谱估算模型具有快速估算土壤中有机质含量的潜力.  相似文献   

10.
基于北京市通州、顺义两区52个潮土样品高光谱数据,利用离散小波多尺度分析技术对其进行处理分析。首先将光谱按六种尺度进行分解,然后将各尺度分解数据与土壤有机质含量进行相关性分析,并筛选敏感波段,最后利用偏最小二乘法构建土壤有机质含量估测模型。结果表明:土壤光谱反射率经小波变换后,在参与建模的特征波段中,近红外波段居多,即近红外波段估测有机质含量的贡献高于可见光波段;低频信息对有机质含量的估测能力优于高频信息;高频信息对土壤有机质含量的估测精度随光谱分辨率降低而降低;与常用光谱变换算法相比,小波变换分析法在一定程度上提高了土壤光谱对有机质含量的估测能力,其低频信息与高频信息构建的最优模型预测精度均较高,低频信息的R2=0.722,RMSE=0.221,高频信息的R2=0.670,RMSE=0.255。  相似文献   

11.
已有的土壤有机质含量估测模型大多以光谱特征波段、线性和非线性模型为基础,较少考虑通过拓展样本数据建模集来提高模型的估测能力.为进一步提高土壤有机质高光谱反演模型估测精度,提出利用生成式对抗网络(GAN)合成伪高光谱数据和有机质含量的动态估测模型.选取湖南省长沙市及周边区域的水稻田为研究对象,采集土样和实测高光谱数据(3...  相似文献   

12.
基于不同模型的土壤有机质含量高光谱反演比较分析   总被引:8,自引:0,他引:8  
以新疆奇台县为研究区域,选取该县40个土壤样本,采用多元线性逐步回归法和人工神经网络法两种方法分别建立了土壤有机质含量的反演模型,并对模型进行了检验。结果发现:不同模型的精度值各异,其拟合效果从高到低依次为人工神经网络(ANNs)集成模型>单个人工神经网络(ANNs)模型>多元逐步回归(MLSR)模型。人工神经网络的线性和非线性逼近能力较强,而其集成模型作为提高反演模型精度的重要手段,相关系数高达0.938,均方根误差和总均方根误差最小,分别仅为2.13和1.404,对土壤有机质含量的预测能力与实测光谱非常接近,分析结果达到了较实用的预测精度,为最优拟合模型。  相似文献   

13.
去除土壤水分对高光谱估算土壤有机质含量的影响   总被引:2,自引:0,他引:2  
土壤高光谱技术具有方便快捷、无破坏、成本低等优点,已被广泛应用于估算土壤有机质含量(SOMC)。然而,野外测量的土壤高光谱数据因受外部环境因素(土壤湿度、温度、表面粗糙度等)干扰,导致SOMC估算模型适用性有待提升。土壤含水率(SMC)是影响野外测量高光谱的最主要的障碍因素之一,它的变化严重影响可见-近红外(Vis-NIR)光谱反射率的观测结果。因此,消除SMC对高光谱数据的干扰是提高土壤高光谱估算SOMC模型预测精度的关键环节。以江汉平原潜江市潮土样本为研究对象,在室内人工加湿土样,分别获取6个SMC水平的土壤高光谱数据,采用标准正态变换(SNV)对光谱数据进行预处理,基于外部参数正交化法(EPO)去除土壤水分对高光谱的影响,利用偏最小二乘方法(PLSR)建立并对比EPO处理前、后不同SMC水平SOMC反演模型。结果表明,土壤水分对Vis-NIR光谱反射率有显著的影响,掩盖了SOMC的光谱吸收特征;EPO处理前不同SMC水平的光谱曲线之间的差异较为明显,而EPO处理后的各SMC水平的光谱曲线形态基本相似;采用EPO处理后的土壤高光谱数据建立SOMC估算模型,预测集的R2p,RPD分别为0.84和2.50,其精度与EPO处理前所建模型相比有较大提升,表明EPO算法可以有效去除土壤水分的影响,从而提升SOMC的估算精度。对定向去除外部环境参数对土壤高光谱影响进行了实证,为完善野外原位获取SOMC信息技术提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号