首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
贾俊辉  温娟娟 《有机化学》2021,(4):1728-1733
设计合成了一种基于水杨醛的酰腙衍生物(Z)-N'-[4-(二乙基胺基)-2-羟基苯亚甲基]苯甲酰肼(DHBH).该化合物不仅表现出优良的聚集诱导发光(AIE)性能,而且表现出可逆的力致荧光变色性能.粉末X射线衍射和场发射扫描电镜结果表明,该DHBH在外界压力刺激下发生力致荧光变色性能的原因是其晶态与无定形态之间的相互转...  相似文献   

2.
设计合成了三个基于六苯基苯骨架结构的四苯基乙烯衍生物HPB-nTPE (n=2, 4, 6), 它们的分解温度均在440 ℃以上, 具有很好的热稳定性. 研究了化合物的均相溶液、聚集体以及固体粉末的光物理性质. 该类化合物具有典型的聚集诱导发光性质, 在均相溶液中几乎不发光, 而形成聚集体后发出明亮的蓝绿色荧光, 荧光量子产率分别为0.37, 0.36和0.37, 与均相溶液中相比增强了400多倍. HPB-nTPE固态呈无定形结构, 荧光量子产率分别为0.39, 0.36和0.36, 约为固态四苯基乙烯的1.8倍. HPB-nTPE的聚集态和固态的高发光量子产率来自两方面的贡献, 一是凝聚态抑制了四苯基乙烯基团中苯环的自由旋转引起的激发态非辐射跃迁, 另一方面是星形刚性六苯基苯骨架进一步抑制了凝聚态分子内和分子间四苯基乙烯基团π-π堆积引起的激发态非辐射跃迁过程, 从而提高了四苯基乙烯基团的辐射跃迁效率. 本研究对高效有机光功能材料的发展有重要意义.  相似文献   

3.
以1,3,5-三嗪为核, 四苯基乙烯为端基, 合成了两种新型的星状结构分子2,4,6-三(4-(1,2,2-三苯基乙烯基)苯基)-1,3,5-三嗪(TTPE-Tr)和2,4,6-三(4-(1,2,2-三苯基乙烯基)-4-联苯基)-1,3,5-三嗪(TTPE-Ph-Tr), 并利用核磁共振(NMR)、离子化质谱(MALDI-MS)及元素分析等对其进行了结构表征. 通过混合溶剂四氢呋喃(THF)/水析出实验显示, 化合物TTPE-Tr和TTPE-Ph-Tr在纯THF溶剂中无荧光, 而在THF/水混合溶剂中, 当水体积分数增加时呈现荧光增强现象. 通过紫外-可见(UV-Vis)光谱、荧光(PL)光谱、扫描电子显微镜(SEM)证实荧光量子效率的提高是由于分子内电子旋转受限(RIR)导致的. 同时发现化合物TTPE-Tr具有力致变色性质, 简单的研磨使其发光颜色(蓝绿光到黄绿光)及发光强度(ΦF, 24.4%到14.7%)发生了明显的改变. UV-Vis光谱、PL光谱、X射线衍射(XRD)、荧光寿命和荧光量子效率等测试结果显示, 这种现象是由于力刺激改变了TTPE-Tr的分子堆积形式导致的. 热分析结果显示化合物TTPE-Tr和TTPE-Ph-Tr的热分解温度分别为464和385℃, 具有良好的热稳定性.  相似文献   

4.
具有聚集诱导发光特性的四苯基乙烯研究进展   总被引:1,自引:0,他引:1  
具有聚集诱导发光(aggregation-induced emission,AIE)性质的四苯基乙烯及其衍生物(tetraphenylethenes,TPEs)因其发光性能优良、合成简便、易多功能化而越来越受到关注.本文着重对最近几年TPEs的AIE性质研究进展进行综述.在阐述结构与AIE性质之间关系的同时,介绍了TPEs在生物、化学传感器及其它方面的应用, 并对TPEs的设计与应用给予展望.  相似文献   

5.
压致变色聚集诱导发光材料   总被引:1,自引:0,他引:1  
聚集诱导发光化合物分子具有特殊的螺旋桨形扭曲构象结构, 导致其很难在结晶状态下进行紧密堆砌, 使得其结晶结构容易在外力的作用发生改变, 致使其分子能级水平和发光光谱发生变化, 产生压致发光变色现象. 因此, 聚集诱导发光化合物是压致发光变色材料的一个重要来源. 压致变色聚集诱导发光材料是一类重要的压致发光变色材料, 其既具有压致发光变色的性能, 又具有聚集诱导发光的性能. 它是一类智能材料, 在应力传感、商标防伪和发光器件等领域具有重要的潜在应用, 近年来受到人们极大的关注. 本文分类介绍了近年来压致变色聚集诱导发光材料的研究进展.  相似文献   

6.
段雨欣  向雪琴  董永强 《化学学报》2016,74(11):923-928
制备了苯基甲苯基二苯并富烯(phenyltolyldibenzofulvene,1)并研究了其发光性能.化合物1具有聚集诱导发光(aggregation induced emission,AIE)及结晶诱导荧光增强(crystallization enhanced emission,CEE)的性质,且化合物1可形成蓝色、蓝绿色荧光的晶体以及黄绿色荧光的无定形态.因化合物1分子为扭曲的螺旋桨构象,分子在聚集态中以较疏松的形式堆积,故化合物1可在热、溶剂气氛以及外力刺激下发生多种聚集态间的可逆转变,从而实现在三种不同发光状态间的可逆转变.我们尝试将化合物1用于光学记录,以单一化合物1为发光材料,其可在蓝绿及蓝色荧光颜色背景上以暗黄绿色字迹记录,可通过研磨、加热及溶剂气氛处理擦除字迹,并将记录纸分别转变为蓝色、蓝绿色及黄绿色,因此化合物1有望用于光存储材料.  相似文献   

7.
设计合成了具有聚集诱导发光增强活性(AEE)的含五苯基吡咯的甲基丙烯酸酯单体M-PPP,并通过自由基聚合制备了系列均聚物及不同五苯基吡咯侧基含量的聚甲基丙烯酸酯共聚物.所制备的均聚物P与共聚物CP在THF/H_2O体系中均具有AEE特性,在水含量大于20%时荧光开始增加,大于80%时荧光快速增加,95%时相对荧光强度达到最大;单体M-PPP则在水含量低于70%时荧光强度略有降低,随后迅速增加,95%后荧光强度下降.五苯基吡咯侧基含量较高的共聚物表现出更好的AEE特性.进一步的研究发现,共聚物CP在THF/H_2O混合溶液中能够对赖氨酸产生荧光点亮型响应.  相似文献   

8.
设计合成了两个含Au(I)的化合物1和2,利用核磁共振(NMR)、红外光谱(IR)、元素分析等对其结构进行了表征.通过对其在二甲亚砜(DMSO)/水体系或N,N-二甲基甲酰胺(DMF)/水体系中荧光光谱的研究,显示其在纯有机溶剂中没有荧光,而在混合体系中,水含量达到一定程度后,其荧光会显著增强.这表明化合物1和2均具有明显的聚集诱导发光性质.对化合物1和2的固体粉末进行研磨,其固体荧光会显著增强,而且将研磨后的样品暴露在有机溶剂蒸汽中一段时间后,荧光强度又会恢复到原来的强度.这表明化合物1和2均具有机械变色的性质.通过它们的X射线粉末衍射(XRD)测试发现,这两个化合物在研磨前后分子堆积态实现了从晶态到无定形态的转变.因此这两个化合物具有成为新型智能材料的潜质.  相似文献   

9.
10.
聚集诱导发光(AIE)材料吸引了许多光电器件和生物荧光技术领域的科学家的关注.对聚集诱导发光化合物构效关系的深入理解对于设计新材料至关重要.在本工作中,基于经典的AIE基元四苯基乙烯,设计并合成了一系列具有AIE性质,含不同电子给体/受体取代基的炔酮衍生物.对这一系列化合物的光物理性质进行了系统研究并分别探讨了取代基团对发光波长、发光效率和AIE性质的影响.它们的聚集态最大发射波长位于511~565 nm,在四氢呋喃/水混合溶液中的荧光量子产率可达31%.在末端苯环上的电子给体/受体取代基团会降低聚集态的发光效率,而引入硝基取代基则会在发射波长红移的同时,显著猝灭荧光.最为重要的是,这些化合物结构中的炔酮基元可以在一系列金属离子中选择性地与Pd2+配位,猝灭纳米聚集体的发光,并有望作为一个有效的Pd2+荧光传感器.  相似文献   

11.
Tuning fluorescence colour of solid-state materials has become a topic of increasing interest for both fundamental mechanism study and practical applications such as sensors, optical recording and security printing. In this work, a fluorescent colour tuneable molecule BA-C16 is rationally designed and facilely synthesized by attaching flexible long alkyl chains to 2-hydroxybenzophenone azine ( BA ), which shows both aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) characteristics. Compared to BA , the simple introduction of long alkyl chains in BA-C16 leads to an emission wavelength redshift from 542 to 558 nm. This strategy of extending emission wavelength is rarely reported, and is ascribed to the enlarged through-space π-conjugation between interplanar molecules in the aggregate of BA-C16 . Three crystals of BA-C16 are obtained with green, yellowish green and yellow emission. According to characterization by X-ray crystallography, X-ray powder diffraction and differential scanning calorimetry, alkyl chains play an important role in inducing different stacking modes of the three crystals, which further leads to polymorph-dependent fluorescence colour. BA-C16 exhibits tuneable solid-state fluorescence upon vapor fumigation, or annealing based on a transition between a “near-monomer” crystalline state and a “dimer” crystalline state. BA-C16 is further applied for rewritable fluorescence printing tuned by vapor- and thermal-treatment.  相似文献   

12.
AIE‐active positional isomers, TTE‐o‐PhCHO , TTE‐m‐PhCHO and TTE‐p‐PhCHO , tetrathienylethene ( TTE) derivates with peripherally attached ortho‐/meta‐/para‐formyl phenyl groups, were designed and synthesized. The formyl substitution position can effectively modulate their photophysical properties, mechanochromism and fluorescent response to hydrazine. TTE‐o‐PhCHO and TTE‐m‐PhCHO exhibit remarkable AIE characteristics, and TTE‐p‐PhCHO possesses aggregation‐induced emission enhancement performance. They all exhibit high contrast mechanochromism, and TTE‐m‐PhCHO shows larger red‐shift (164 nm) than TTE‐o‐PhCHO (104 nm) and TTE‐p‐PhCHO (125 nm) due to the more twisted molecular conformation and much looser molecular packing. Moreover, TTE‐o‐PhCHO with a higher contrast color change can be used as ink‐free rewritable paper. In addition, TTE‐p‐PhCHO , as a turn‐on fluorescent probe, can selectively detect hydrazine with significant color changes that are visible by the naked eye . Therefore, the position dependence of groups would be an effective method to modulate the molecular arrangement, as well as develop AIE compounds for mechano‐stimuli responsive materials, ink‐free rewritable papers and chemosensors.  相似文献   

13.
The development of high-contrast stimulus-responsive materials with excited triplet emission is of great significance for anti-counterfeiting, sensor and memory applications, but remains a challenge. Here, we report a strategy for the rational design of stimulus-responsive phenothiazine derivatives with triplet-related dual emissions and high-contrast mechanochromism guided by Polymorph Prediction. The designed phenothiazine derivatives have the characters of simple structures, a facile synthetic procedure, and a good crystalline nature. We found that the crystals of those derivatives with the potential to form both quasi-axial (ax) and quasi-equatorial (eq) conformations could undergo conformation transition and show significant emission difference (Δλem>100 nm) under mechanical force. Meanwhile, all these phenothiazine derivatives exhibit aggregation-induced emission and emit room-temperature phosphorescence or thermally activated delayed fluorescence. The significant luminescent change of these materials under different stimuli gives them promise for applications in encryption and anti-counterfeiting.  相似文献   

14.
A series of new tetrakis(dialkoxyphenyl) dicyanotetraoxapentacene derivatives ( 1 a – c ) were prepared by reaction of the appropriate terphenyl diols with tetrafluoroterephthalonitrile in good yields. Compounds 1 b and 1 c , which bear hexyloxy and decyloxy side chains, exhibited columnar hexagonal mesophases, as shown by polarized optical microscopy, variable-temperature powder X-ray diffraction, and differential scanning calorimetry. Single-crystal X-ray diffraction of methoxy-substituted 1 a revealed that the dicyanotetraoxapentacene core is highly planar, consistent with the notion that these molecules are able to stack in columnar mesophases. A detailed photophysical characterization showed that these compounds exhibit aggregation-induced emission in solution, emission in nonpolar solvents, weak emission in polar solvents, and strong emission in the solid state both as powder and in thin films. These observations are consistent with a weakly emissive charge-transfer state in polar solvents and a more highly emissive locally excited state in nonpolar solvents.  相似文献   

15.
Molecules with donor–spacer–acceptor configuration have been developed rapidly given their peculiar properties. How to utilize intermolecular interactions and charge transfers for solution-processed organic light-emitting diodes (OLEDs) greatly relies on molecular design strategy. Herein, soluble luminophores with D-spacer-A motif were constructed via shortening the alkyl chain from nonane to propane, where the alkyl chain was utilized as a spatial linker between the donor and acceptor. The alkyl chain blocks the molecular conjugation and induces the existence of aggregation-induced intermolecular CT emission, as well as the improved solubility and morphology in a solid-state film. In addition, the length of the alkyl chain affects the glass transition temperature, carrier transport and balance properties. The mCP-3C-TRZ with nonane as the spacer shows better thermal stability and bipolar carrier transport ability, so the corresponding solution-processable phosphorescent organic light-emitting diodes exhibit superior external quantum efficiency of 9.8% when using mCP-3C-TRZ as a host material. This work offers a promising strategy to establish a bipolar host via utilizing intermolecular charge transfer process in an aggregated state.  相似文献   

16.
In the solution state, there were no notable differences between the optical properties of a range of alkyl‐substituted tetracenes. However, in the solid state, their photophysical properties changed with respect to the length, shape, number, and substitution pattern of the alkyl side chains, as well as the distribution of two regioisomers. Remarkably, in the solid state, 1,4,7,10‐tetraisopropyltetracene exhibited the highest reported fluorescence quantum yield of any tetracene derivative (0.90). The changes in the optical characteristics of these tetracenes according to the arrangement of the tetracene rings and the color‐change mechanism in the solid state are discussed. Moreover, the world record in solid‐state fluorescence efficiency in acenes larger than anthracene is described. DOI 10.1002/tcr.201200003  相似文献   

17.
Stimuli-responsive luminescent materials, which are dependent on changes in physical molecular packing modes, have attracted more and more interest over the past ten years. In this study, 2,2-dihydroxy-1,1-naphthalazine was synthesized and shown to exhibit different fluorescence emission in solution and solid states with characteristic aggregation-induced emission (AIE) properties. A remarkable change in the fluorescence of 2,2-dihydroxy-1,1-naphthalazine occurred upon mechanical grinding, heating, or exposure to solvents. According to the characterization by solid-state fluorescence spectroscopy, X-ray crystallography, differential scanning calorimetry, and X-ray powder diffraction, the fluorescence change could be attributed to transitions between two structurally different polymorphs. These significant properties could also give 2,2-dihydroxy-1,1-naphthalazine more potential applications as a multifunctional material.  相似文献   

18.
Conventional fluorescent dyes have the property of decreasing fluorescence due to aggregation-caused quenching effects at high concentrations, whereas aggregation-induced emission dyes have the property of increasing fluorescence as they aggregate with each other. In this study, diketopyrrolopyrrole-based long-wavelength aggregation-induced emission dyes were used to prepare biocompatible nanoparticles suitable for bioimaging. Aggregation-induced emission nanoparticles with the best morphology and photoluminescence intensity were obtained through a fast, simple preparation method using an ultrasonicator. The optimally prepared nanoparticles from 3,6-bis(4-((E)-4-(bis(40-(1,2,2-triphenylvinyl)-[1,10-biphenyl]-4-yl)amino)styryl)phenyl)-2,5-dihexyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DP-R2) with two functional groups having aggregation-induced emission properties and additional donating groups at the end of the triphenylamine groups were considered to have the greatest potential as a fluorescent probe for bioimaging. Furthermore, it was found that the tendency for aggregation-induced emission, which was apparent for the dye itself, became much more marked after the dyes were incorporated within nanoparticles. While the photoluminescence intensities of the dyes were observed to decrease rapidly over time, the prepared nanoparticles encapsulated within the biocompatible polymers maintained their initial optical properties very well. Lastly, when the cell viability test was conducted, excellent biocompatibility was demonstrated for each of the prepared nanoparticles.  相似文献   

19.
The development of mechanochromic fluorophors with high-brightness, solid-state fluorescence is very significant and challenging. Herein, highly solid-state emissive triphenylamine, carbazole and tetraphenylethylene-functionalized benzothiadiazole derivatives were developed. These compounds showed remarkable aggregation-induced emission and solvatochromic fluorescence characteristics. Furthermore, these fluorogenic compounds also displayed different mechanically triggering fluorescence responses.  相似文献   

20.
具有聚集诱导发光性质化合物的发展不仅很大程度上解决了传统有机分子发色团在高浓度、固态或者薄膜等形式的聚集状态下荧光猝灭的问题,而且扩展了有机发色团在荧光探针、传感器以及细胞成像等方面的应用。其中,四苯乙烯及其衍生物作为具有聚集诱导发光性质的典型化合物已被广泛应用在材料化学、生物化学等相关研究领域。受此启发,超分子化学家也将这类具有聚集诱导发光性质的四苯乙烯及其衍生物作为研究对象引入到超分子化学的领域,特别是利用大环主体与四苯乙烯客体通过主客体相互作用有效地限制了荧光客体分子的分子内转动或运动,增强了这类超分子体系的发光强度,并为其在刺激响应性传感器、智能探针等方面提供了新思路。本文总结了近年来涉及四苯乙烯衍生物与大环主体通过主客体相互作用形成聚集诱导发光超分子体系的发展,并按照大环主体进行分类简要介绍其应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号