共查询到20条相似文献,搜索用时 78 毫秒
1.
为了从全向红外搜索和跟踪系统采集的海量大视场高分辨率红外图像中快速准确地检测出红外弱小目标,本文提出了一种基于由粗到细的分阶段检测策略和时空域特征融合的红外弱小目标检测算法.首先,通过引入基于频域的快速显著性检测算法预先检测出目标可能存在的候选区域;其次,对候选区域进行角点检测以判定是否存在候选目标;最后,通过结合帧间时空域特征对候选目标进行进一步判定,以提取真实目标、删除虚假目标.多种实际场景的实验结果表明,该目标检测算法不仅运算量小而且探测概率高、虚警率低,是一种工程实用性能很好的红外弱小目标检测算法. 相似文献
2.
3.
高光谱图像立方体数据可以提供成像场景中地物在可见光和近红外波长范围内的空间信息和地物属性诊断的光谱特征信息,在目标检测与识别方面拥有得天独厚的天然优势。然而,基于高光谱图像数据的目标检测也存在一定缺陷,如经典的高光谱目标检测算法仅利用光谱维度信息检测目标,检测模型要么对背景高维特征矩阵构建的准确度不足,要么对背景先验光谱特征的完备性要求较高,导致算法对不同复杂度的检测场景适应性不强。因此,基于计算复杂度较低、参数需求量较少且检测性能较为优异的经典多目标检测算法—多目标约束能量最小化(MCEM),提出了一种基于目标与背景环境特征分离模型的高光谱目标检测修正算法(R-MCEM)。首先,设计了一个与目标形状、尺寸相近的逐像元移动运算窗口,依次计算窗口中的每个像元与窗口内其他像元的光谱距离之和D1,像元与各类目标的光谱距离之和D2。其次,采用获得D1/D2最小值的像元替换窗口内的所有像元值。然后,自左向右、自上而下逐像元移动窗口,重复窗口内每一个像元与目标、背景像元的光谱距离运算,并确定窗口内与背景相似度最高、与目标相似度最低的像元。直到移动运算窗口遍历整个高光谱图像,大幅提升了基于目标与背景... 相似文献
4.
5.
针对Faster R-CNN在多尺度目标检测时易出现小目标漏检和误检的问题,提出一种改进的多尺度目标检测算法。将利于小目标检测的低层网络和利于大尺度目标检测的高层网络进行多尺度特征融合;在训练阶段,采用在线难例样本挖掘算法维护难例样本分类池,加速神经网络模型迭代收敛,解决训练样本不均衡、训练效率低下的问题;计算并统计待检测目标的尺度大小,合理控制用于生成候选区域的锚框尺寸,提高模型泛化能力。采用PASCAL VOC2012公开数据集和类人足球机器人自建数据集进行算法验证,实验结果表明,相比Faster R-CNN算法,本算法的平均检测精度在上述数据集下分别提高了8.61和5.47个百分点。 相似文献
6.
7.
提出了一种新的复杂背景下低信噪比红外弱点目标检测算法。根据红外弱点目标在图像中的三维空间特征,从空间认知的角度出发,将三维的灰度分布特征转化为二维的等高线曲线特征,建立红外图像的等高线图(IECM)描述,利用图论中的树结构(等高线树)形式化地表达等高线的空间关系,在此基础上,给出弱点目标检测的等高线树检测准则,同时给出了等高线划分等级的选择方法。理论分析与实验结果表明,该算法具有良好的检测性能,且结构简单,利于硬件实时实现。在信噪比为1.4的情况下,对红外图像序列的检测概率为96.3%。 相似文献
8.
9.
针对复杂的自然背景下的运动目标检测,提出了一种基于分形特征的运动目标检测算法;该算法利用目标的分形维数与自然背景分形维数的差异将目标从背景检测出来;首先应用改进的地毯覆盖法快速得到图像的分形维数,然后通过比较邻域之间分形维数的相互关系进行目标检测;实验结果表明,该方法能对复杂背景下的运动目标进行检测,由于采用分块求分形特征的方法,能有效地减少搜索目标所带来的计算量,算法过程简单、检测速度快、检测结果精确,目标与背景对比度的变化对检测结果几乎没有影响, 且噪声对该算法的检测结果影响较小;在运动目标实时检测问题上有着很好的实用价值和应用前景。 相似文献
10.
11.
针对红外弱小目标检测问题,提出了一种基于图像复杂度的自适应门限目标检测方法.讨论了天空中四类不同区域的图像信息熵.图像信息熵虽然较好地表达了图像的平均信息量,但对图像的突变点不敏感.将它改进得到图像方差加权信息熵,其较好地反映了图像的复杂度特征.将图像方差加权信息熵作为图像复杂度的定量描述,用两种特定的分析模板对图像复杂度进行分析.在目标区域中,两种分析模板得到的复杂度差异较大,而非目标区域的两种复杂度则基本没有差异.算法获取两种分析模板下的复杂度图像,再对两种复杂度图像做差,得到复杂度差值图像.对差值图像建立指数模型得到自适应分割门限完成目标检测.实验结果表明,该方法对低信杂比的红外云层背景弱小目标图像具有良好的检测效果. 相似文献
12.
基于复杂度的自适应门限弱小目标检测方法 总被引:2,自引:0,他引:2
针对红外弱小目标检测问题,提出了一种基于图像复杂度的自适应门限目标检测方法.讨论了天空中四类不同区域的图像信息熵.图像信息熵虽然较好地表达了图像的平均信息量,但对图像的突变点不敏感.将它改进得到图像方差加权信息熵,其较好地反映了图像的复杂度特征.将图像方差加权信息熵作为图像复杂度的定量描述,用两种特定的分析模板对图像复杂度进行分析.在目标区域中,两种分析模板得到的复杂度差异较大,而非目标区域的两种复杂度则基本没有差异.算法获取两种分析模板下的复杂度图像,再对两种复杂度图像做差,得到复杂度差值图像.对差值图像建立指数模型得到自适应分割门限完成目标检测.实验结果表明,该方法对低信杂比的红外云层背景弱小目标图像具有良好的检测效果. 相似文献
13.
14.
为了在野外环境中快速有效地识别敌方伪装的机动目标,设计了基于光谱探测与视频图像目标识别方法联用的目标识别系统。采用视频图像识别技术获取被测区域的二维影像,再通过光谱探测技术识别目标,最终将目标重建在图像相应位置上从而实现目标识别的可视化。理论推导得到了系统可识别目标的函数关系式,根据该函数关系进行了目标识别的量化实验。实验采用汽车模拟被测机动目标,在不同距离上分别以平坦荒地、灌木丛和废弃建筑物为背景,对明显目标、涂覆迷彩色的目标以及遮挡伪装物的目标分别进行光谱探测。实验结果显示,测试背景对光谱探测效果有一定影响,背景的连续性有利于目标识别;伪装方式以伪装物遮挡最难识别,且随着目标与系统的距离增大而信噪比随之降低。综上所述,采用光谱探测技术克服了传统图像目标识别无法识别伪装目标的缺点,可以实现对伪装目标的有效识别。 相似文献
15.
光纤型表面等离子共振光谱具有半峰宽较宽,共振峰不尖锐等特征,传统的针对棱镜型SPR光谱的峰值检测算法无法准确定位此类光谱的共振峰值。为了准确计算光纤型SPR光谱的共振波长,提出了一种基于信赖域算法的高斯拟合方法,在拟合的光谱曲线上利用一维搜索的方式确定峰值位置。通过对标准甘油光谱数据的处理,证明高斯拟合法能够适应光纤型SPR光谱的特征,波长计算准确。通过搭建的SPR系统,实验测量了不同浓度下蔗糖溶液的SPR光谱数据,并分别采用加权质心法,追踪质心法和该研究提出的高斯拟合法进行共振波长的计算。结果表明高斯拟合法能够有效提升分辨率,且运算速度较快,有利于工程集成。 相似文献
16.
以全国17个主要烤烟产地省份中收集的3 914个烟叶样品的近红外光谱为实验对象,其中浓香型、中间香型、清香型烟叶光谱分别865条、1 403条、1 646条,应用近红外光谱和多算法融合方法分析其香型风格特征。在以产地进行初步划分烟叶香型以及认可过渡型和非典型香型类型的基础上,选取基于主成分及Fisher准则的投影法(PPF)、偏最小二乘判别(DPLS)、支持向量机(SVM)作为单分类器,得到各个算法第1和2判别分析结果;应用PPF-DPLS-SVM融合和各算法第1和2判别分析结果,将预测验证样品的分析结果详细划分为典型、过渡型、非典型香型样品(分别为493,392,115个);其中典型香型烟叶样品的判别准确率达到92.7%,较未进行典型样品划分时PPF,DPLS,SVM单算法的识别准确率分别提高了30.2%,15.4%,16.6%。样品数据来源于全国主要烤烟产地,数据量大,代表性较好,分析结果具有一定普遍性;提出的多算法融合分析方法大幅度提高了通过客观数据判别烤烟香型的准确率;同时,将烤烟香型细划分为典型、过渡型和非典型香型的方式,对烤烟烟叶原料的科学合理利用以及烟叶原料的模块化工业加工等有指导作用。 相似文献
17.
现有的基于单个红外宽波段的海面舰船目标探测系统在面对复杂海天背景、岛岸背景、恶劣天气、亮带干扰或诱饵弹干扰等情况时,系统的探测率、虚警率、探测距离等性能指标均会受到严重的影响;为此,开展了基于多波段红外图像的海面舰船目标检测方法的研究。通过中波红外多波段数据采集系统实际采集107组五个中波红外波段的图像;波段1-5分别为3.7~4.8,3.7~4.1,4.4~4.8,3.7~3.9和4.65~4.75 μm;对多波段图像进行手动标注构建样本数据集,其中,正样本舰船目标298个,负样本非舰船目标353个。对于多波段红外图像,首先进行PCA降维并采用选择性搜索算法生成初始目标候选区域;针对候选区域中存在大量明显的非舰船目标区域的问题,利用积分图像计算候选区域的局部对比度,依据红外舰船目标的几何和灰度特征从初始目标候选区域中筛选出舰船目标可能性大的区域作为舰船目标候选区域。然后对舰船目标候选区域进行拓展以融入局部上下文信息,对于候选区域对应的5波段红外图像,分别提取每个波段图像的稠密SIFT特征,并将128维SIFT特征向量降为64维,融入SIFT特征的空间和波段位置分布信息得到新的特征向量,基于高斯混合模型对候选区域的特征向量集合进行编码融合得到舰船目标候选区域的费舍尔向量表示,最后利用线性SVM分类器识别出舰船目标。对多波段图像进行舰船目标候选区域生成实验,所提出的基于红外舰船目标的几何和灰度特征的约束方法可以有效地克服选择性搜索算法的不足,从初始目标候选区域中快速定位出舰船目标候选区域,对25组多波段图像进行实验,舰船目标候选区域生成的整体耗时为0.353 s,定位舰船目标区域耗时0.005 s。对100个正负样本进行目标识别测试,所提出的目标识别算法融合了目标的多波段图像特征信息,通过引入费舍尔向量挖掘了多波段图像梯度统计特征的深层次信息,算法的识别率达到了0.97,显著高于单波段红外图像的目标识别率。对25组多波段图像进行舰船目标检测实验,所提出的舰船目标检测方法能够在海天背景、岛岸背景以及亮带干扰等不同场景下完成海面舰船目标的检测工作,舰船目标定位准确,舰船目标召回率达到了0.95,每组多波段图像的平均检测耗时为1.33 s。研究结果表明,充分考虑海面舰船目标在红外图像中与局部海洋背景的辐射差异以及有效地融合舰船目标在多个红外波段图像中的辐射特征,可以增强舰船目标的可分性,提高舰船目标的识别率以及检测率,为基于多波段红外图像的海面舰船目标检测提供了新的技术支持。 相似文献
18.
疲劳驾驶是目前道路交通的一个重要安全隐患,对车载疲劳驾驶系统的研发具有重要的应用价值和广阔的市场前景。目前存在的疲劳监测系统普遍存在成本高,可靠性不足,使用不够便捷等缺陷。通过在安卓平台上采用计算机视觉的途径进行开发和实现,将大大降低系统的成本和使用复杂度。通过多种疲劳特征融合的方法对疲劳状态进行综合性判断,可以有效的增加系统的准确性和可靠性。采用优化的二叉树支持向量机多分类算法能够使得特征融合的过程具有准确性和速度上的优势。在对该疲劳检测系统的相应测试中也获取了良好的实验结果。 相似文献
19.
基于最小一乘和混沌遗传算法检测红外小目标 总被引:4,自引:1,他引:3
提出了一种基于最小一乘估计和混沌遗传算法进行背景预测检测红外小目标的方法.在建立最小一乘准则背景预测模型的基础上,根据最小一乘估计的性质,利用混沌序列内在的伪随机性,将混沌引入到遗传算法得到混沌遗传优化算法,以此解决最小一乘估计中极值的选取问题.将原始图像与预测图像相减得到预测残差图像后,利用基于二维指数熵的图像阈值选取快速算法进行分割.给出了实验结果与分析,并与基于遗传算法的最小一乘预测、最小二乘背景预测的检测算法作了比较.实验结果表明,提出的算法具有更高的检测概率和更好的检测结果. 相似文献
20.
通过比较测量方法测量得到绿漆涂层木板探测目标在400~720 nm的光谱偏振二向反射分布函数值,从获得的户外试验测量数据入手,分析与探测角、波长之间的关系,通过有限探测条件得到的光谱偏振二向反射分布函数值(BRDF)建立光谱偏振BRDF模型,来描述探测目标的偏振二向反射特性。其中利用基于小面元的模型建立光谱偏振BRDF模型,利用遗传算法和Levenberg-Marquardt(LM)算法相结合的优化算法来获得非线性模型参数。仿真实验结果表明采用的遗传LM优化算法具有较好的性能,能较快较准确得到非线性的模型参数。真实实验数据证明了基于小面元模型的正确性,表明光谱偏振二向反射分布函数建模方法结果的可靠性。最后与绿漆涂层铁板目标的模型反演参数进行比较得出:2种不同材质、相同颜色涂层的目标,具有较为接近的折射率,其较小差别可以理解为由涂层的厚度、均匀程度的不同导致,而非不同的材质所引起。 相似文献