首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
基于主成分分析和支持向量机的山羊绒原料品种鉴别分析   总被引:1,自引:0,他引:1  
提出了一种用近红外光谱技术快速无损鉴别羊绒原料品种的新方法。山羊绒的外观形态和品质特征随着山羊绒原料的品种不同有很大的区别,快速、有效、正确地鉴别山羊绒纤维,对山羊绒及其制品的生产与交易具有重要的意义。应用可见/近红外光谱漫反射技术测定各种山羊绒原料的光谱曲线,用主成分分析法对不同品种山羊绒原料进行聚类分析并获取山羊绒原料的近红外指纹图谱,再结合支持向量机技术进行品种鉴别。用主成分1,2和3对所有建模样本的得分值做出的得分图,分析聚类效果,将主成分分析得到的10个主成分作为支持向量机的输入,应用数据挖掘新方法—支持向量机对山羊绒原料品种进行鉴别。通过对5个山羊绒原料品种共100个样本的训练,对未知的75个样本进行鉴别,建立了山羊绒原料品种鉴别的支持向量机的分类模型,并对比了四种核函数的支持向量机的分类性能,结果表明,具有高斯核函数的支持向量机对山羊绒原料的鉴别准确率达到100%。说明文章提出主成分分析结合支持向量机的数据挖掘方法具有很好的分类和鉴别作用,为山羊绒原料的品种快速鉴别提供了一种新方法。  相似文献   

2.
针对传统玉米品种抗倒性鉴别方法费时费力、时效滞后的问题,采用高光谱成像数据结合机器学习方法对9叶期的玉米品种抗倒性进行鉴别,并给出适于进行玉米品种抗倒性鉴别的种植密度和建模方法。试验设置了5 000,7 000和9 000株·亩-13个种植密度和6个典型的抗倒/不抗倒玉米品种,采集9叶期玉米顶叶的高光谱图像,使用目标区域分割的方式自动进行光谱图像反射率校正和目标光谱曲线提取。对采集的样本数据使用Kennard Stone算法划分样本训练集和测试集,用主成分分析法(PCA)和连续投影算法(SPA)提取光谱特征,建立了基于高斯核函数的支持向量机(SVM)模型并进行参数训练和优化。通过对不同种植密度下各特征提取方法的效果和各模型训练效果及其预测结果的对比,找到进行玉米抗倒性鉴别的最佳种植密度和建模方法。试验结果表明:在各种植密度下PCA方法对光谱特征的降维效果最为显著,而SPA算法选择的特征波长分布比较均匀、抗倒性分类特征比较明显;种植密度的增加对于玉米品种抗倒性的鉴别是有益的,在种植密度为7 000株·亩-1时,使用SPA-SVM方法建立的模型训练效果和预测结果最佳,此时模型对训练集数据的10折交叉验证正确率为97.40%,对测试集数据的预测正确率为98.33%。  相似文献   

3.
基于遗传算法与线性鉴别的近红外光谱玉米品种鉴别研究   总被引:2,自引:0,他引:2  
结合遗传算法与线性签别分析(LDA)提出了一种玉米品种的快速鉴别方法.该方法是一种基于近红外光谱的新方法,通过采集玉米种子(实验共37个种类)的近红外光谱数据,使用遗传算法进行特征光谱波段的选择,使用线性鉴别分析的方法提取光谱特征并分类.结果表明,遗传算法能有效地剔除光谱噪声波段,并提高 LDA 的泛化能力.同时,为简化运算,剔除了大量冗余数据,结合遗传算法选择的特征谱区,使参与鉴别的数据维数从2 075降到了233.对测试集1的300个样本的平均正确识别率与平均正确拒识率均达到99.30%,其中73.33%的玉米品种的正确识别率达到了100%;对测试集2(均为未参加训练品种的样本)的175个样本的平均正确拒识率达到99.65%.与常用的 PCA 等方法相比,运算时间更短,正确率更高.  相似文献   

4.
提出了一种采用近红外光谱技术结合人工神经网络对玉米品种进行鉴别的方法。在3 800~10 000 cm-1(波长1 000~2 632 nm)范围内采集四种玉米单粒完整籽粒的近红外漫反射光谱,经Savitky-Golay平滑和多重散 射校正预处理后,对数据进行主成分分析,再结合人工神经网络技术进行品种鉴别。主成分分析表明,前8个主成分的累积贡献率达到99.602%。以前8个主成分作为网络输入,品种类型作为输出,建立三层LMBP神经网络模型。每个品种 各取30粒共120个样本用于建模,10粒共40个样本用于预测。模型对建模集120个样本鉴别率为100%,对预测集40个样本的鉴别率为95%。实验结果说明该方法能快速无损地鉴别玉米品种,为玉米的品种鉴别提供了一种新方法。  相似文献   

5.
花椒是我国的八大调味料之一。目前花椒市场掺假现象较为多见,为实现掺假花椒粉的快速定性鉴别,采用了近红外光谱结合化学计量学方法进行了探讨。将麦麸粉、稻糠粉、玉米粉和松香粉以1 Wt/Wt.%的递增梯度分别掺入红花椒粉和青花椒粉中,制备掺假浓度范围为1~54 Wt/Wt.%的掺假花椒粉样品,以掺假花椒粉和纯花椒粉共462份样品依次采集其800~2 500 nm范围的漫反射近红外光谱。采用主成分分析法(PCA)对光谱数据进行分析,前3个主成分累计贡献率达98.72%,做出的得分图表明PCA法对掺假的花椒粉具有较好的区域划分。347份样本作为校正集,以特征谱区2 000~2 200 nm范围的257个采样点的光谱信号作为输入,采用判别偏最小二乘法(DPLS)和支持向量机(SVM)建立定性鉴别模型,经不同光谱预处理,对115份验证集样本进行预测,总体鉴别正确率在97.39%~100%之间,表明该方法是快速定性鉴别掺假花椒粉的一个有效手段。  相似文献   

6.
以淮南矿区谢桥矿和潘二矿的煤和岩石样本为研究对象,通过地物光谱仪采集样本反射率光谱曲线,同时检测样本氧化物含量、水分、灰分及挥发分含量,将样本的反射率光谱曲线和样本成分含量分别作为自变量,样本类别“煤”和“岩石”两种矿物类型作为因变量,建立煤和岩石识别模型对煤和岩石进行二分类。该研究主要采用三种模型,分别为主成分分析结合支持向量机(PCA-SVM)、主成分分析结合BP神经网络(PCA-BP)模型和核主成分分析结合支持向量机(KPCA-SVM)模型。结果表明,基于可见光近红外光谱的三个模型中,核主成分分析结合支持向量机模型的识别精度最高,建模平均精度为95.5%,验证平均精度约为90.56%;基于样本成分的三个模型中,核主成分分析结合支持向量机模型的识别精度最高,建模平均精度为98.5%,验证平均精度约为95%。  相似文献   

7.
基于PCA和SVM的高光谱遥感图像分类研究   总被引:4,自引:0,他引:4  
支持向量机(SVM)是根据统计学习理论提出的新的研究方法,它在解决小样本、非线性及高维模式识别问题中表现出了许多特有的优势,在模式识别、函数逼近和概率密度估计等方面取得了良好的效果。由于高光谱图像波段数目多,各波段间具有较强的相关性,因此通过主成分分析(PCA)方法对高光谱数据进行预处理,达到了降维的目的,同时也去除了噪声波段。用支持向量机方法对高光谱遥感图像进行分类,可实现图像的分类识别。  相似文献   

8.
提出了一种基于近红外光谱分析技术和最小二乘支持向量机的鉴别方法,能够快速、无损鉴别聚丙烯酰胺的三种类型。获取非离子,阴离子和阳离子等三种类型的聚丙烯酰胺样本的近红外漫反射光谱,用主成分分析方法对样本光谱数据进行降维,并提取主成分。基于前三个主成分对三种类型的聚丙烯酰胺样本进行聚类分析,并将主成分作为最小二乘支持向量机的输入。通过基于网格搜索的交叉验证方式优化最小二乘支持向量机的参数和作为其输入的主成分个数。每种类型聚丙烯酰胺各采集60个样本,共采集180个样本,每种类型样本随机选取45个样本,共135样本作为训练样本集,剩余45个样本作为测试集。为了验证该方法能否鉴别掺假样本,制备了掺入不同比例非离子聚丙烯酰胺的5个阴离子和5个阳离子聚丙烯酰胺样本。采用基于训练样本集交叉验证预测误差的F统计显著性检验方法来确定样本的鉴别结果误差阈值。结果表明,预测测试集时,准确率为100%。预测10个混和样本时,所有混合样本都被准确识别出。说明该方法能快速无损鉴别不同类型的聚丙烯酰胺并且具有掺假鉴别能力,为聚丙烯酰胺类型的快速鉴别提供了一种新方法。  相似文献   

9.
提出出了一种基于近红外光谱分析技术快速无损测定苜蓿秋眠类型的新方法.应用近红外光谱漫反射技术测定苜蓿样本的光谱并对其进行主成分分析(PCA),根据主成分的累积贡献率选取前10个主成分建立支持向量机(SVM)分类模型,并对其参数及核函数类型进行了详细的分析和讨论.试验结果表明,当c=0.339 2,g=32时,测试集的预测准确率可达98.182%,可以作为初步测定苜蓿秋眠类型的手段之一.同时,与主成分回归分析、偏最小二乘法、BP神经网络、LVQ神经网络等方法相比较的结果表明,PCA-SVM模型可以有效地解决小样本问题,且可以避免陷入局部极小.  相似文献   

10.
利用傅里叶变换近红外光谱技术,对黄酒酒龄鉴别的模型进行研究。对绍兴黄酒样本光谱主成分进行提取与分析,并发现前3个主成分具有较明显的聚类特征。其次,利用LS-SVM模型对不同主成分数进行分类和寻优,发现当主成分数为6时达到判别的正确率是100%,此时模型的两个参数γ和2σ分别为61.890和1.769。研究表明,利用傅里叶变换近红外光谱技术并结合主成分分析(PCA)和最小二乘法支持向量机(LS-SVM)可作为一种可靠、准确、快速的检测方法用于黄酒酒龄定性鉴别分析。  相似文献   

11.
薏仁种类的近红外光谱技术快速鉴别   总被引:1,自引:0,他引:1  
薏仁是一种药食两用资源,对其品质快速鉴别的需求也越来越多,近红外光谱技术(near infrared spectroscopy,NIRS)作为一种快速、 无损且环保的方法正适合这一需求。 以不同产地和品种薏仁的近红外光谱为基础,结合化学计量学方法对薏仁种类进行鉴别。 对原光谱用无监督学习算法主成分分析(principal component analysis,PCA)和有监督学习算法学习向量量化(learning vector quantization,LVQ)神经网络、 支持向量机(support vector machine,SVM)进行定性判别分析。 由于不同地区和不同品种的薏仁营养物质组成复杂且含量相近,所选两类薏仁的特征变量很相似,因而PCA得分图重叠严重,很难区分;而LVQ神经网络和SVM都能得到满意结果,LVQ神经网络的预测正确率为90.91%,SVM在经过惩罚参数和核函数参数优选后,分类准确率能达到100%。 结果表明:近红外光谱技术结合化学计量学方法可作为一种快速、 无损、 可靠的方法用于薏仁种类的鉴别,并为市场规范提供技术参考。  相似文献   

12.
以金溶胶作为活性基底,浓度为1% 的NaCl溶液作为活性剂,利用DXRTM显微拉曼光谱仪采集鸡肉的表面增强拉曼光谱(SERS),实现快速鉴别鸡肉中残留的磺胺二甲基嘧啶(SM-2)和磺胺吡啶(SPD)两种抗生素.用937和1188 cm-1处是否有拉曼特征峰来判别鸡肉中是否残留S PD和S M-2.采用单因素实验方法,根...  相似文献   

13.
近红外漫反射光谱法快速鉴别石斛属植物   总被引:2,自引:0,他引:2  
通过采集15种石斛171份样品的近红外漫反射光谱,结合化学计量学统计分析方法建立预测模型,对不同种石斛进行快速无损鉴别。应用Hotelling T2对随机抽取的5份样品的近红外光谱进行稳定性分析,结果表明,样品的近红外光谱具有较好稳定性。设计正交试验L24(2×4×3×8),对光程类型、光谱波段、导数和平滑四个因素进行优化处理。利用主成分分析对正交试验结果进行分析,结果显示,选择6 500~4 000cm-1的光谱波段,采用多元散射校正、二阶导数和Norris平滑对光谱预处理,提取的主成分数为7时,光谱判别正确率为100%。将正交试验优化条件作为偏最小二乘法判别分析的输入值,随机选取123份样本作为校正集建立预测模型,其余48份样本为预测集,评估预测模型的性能。结果表明,该模型前3个主成分累积贡献率为99.36%,设定鉴别标准偏差为±0.1时,该方法的正确识别率为97.92%,获得满意的结果。该方法的建立为不同种石斛的快速鉴别提供了一种新的方法,同时为药用植物的鉴别提供参考。  相似文献   

14.
玉石是一种稀有的矿物质,自古以来备受国人喜爱,其真伪鉴别一直是珠宝鉴别行业的棘手难题,传统的鉴别方法已经难以实现对真假玉石的准确鉴别。太赫兹检测技术可以实现快速无损检测,在混合物的分类鉴别方面,有广泛的应用。基于太赫兹时域光谱技术和模式识别技术,对来自我国新疆、青海,以及巴基斯坦、阿富汗四个地区的软玉样品及玻璃、大理石、石包玉三种仿品,使用透射模式测得样品在0.1~1.5 THz频率范围内的太赫兹谱,通过参数提取得到其折射率谱线。由于其化学成分的复杂和多样性,仅靠其特征谱线图,并不能正确的区分软玉和仿品,为了更好的对其进行鉴别,需要建立分类模型。采用主成分分析(PCA)对实验得到的原始折射率数据进行降维和特征提取,作出样品在第一、二主成分上的二维得分图,在图中可以看出软玉和仿品能够很明显的区分开来。在经过降维处理之后的数据中,随机选取其中的四分之三作为训练集,剩下的作为测试集,输入到支持向量机(SVM)建立的分类模型中,并引入网格搜索(GridSearch)、遗传算法(GA)和粒子群算法(PSO)对支持向量机参数进行优化。结果显示,基于网格搜索的支持向量机最优参数c=2.828 4,g=2,识别率为97.7%,运行时间为1.39 s,用时最短;基于遗传算法的支持向量机最优参数c=1.740 1,g=4.544 6,识别率为98.3%,运行时间为3.6 s;基于粒子群算法的支持向量机最优参数c=11.287 2,g=1.833 1,识别率为98.6%,运行时间为6.13 s,用时最长。虽然三种优化算法得到的最优参数不同,但均可实现正确的分类。研究结果表明,使用太赫兹时域光谱技术结合模式识别方法可以快速、准确的鉴别软玉和仿品,这为玉石的鉴别提供了一种新手段。  相似文献   

15.
利用主成分分析方法结合支持向量机建立了太赫兹时域光谱冰片种类鉴别模型。冰片是一些常用中成药的重要成分,由于其来源多、真假易混淆,在制药和交易环节,迫切需要快速、简便、准确的检测、鉴别方法。太赫兹时域光谱技术是利用太赫兹脉冲表征物质性质的一种新兴光谱技术。实验使用透射式太赫兹时域光谱系统分别获得了艾片、合成冰片和梅片三种冰片在0.2~2 THz之间的吸收谱线。通过主成分分析,做出了第一、第二主成分二维得分图以及第一、二、三主成分三维得分图,两者对三种不同种类冰片都具有很好的聚类效果。用前十个主成分的得分值矩阵代替原光谱数据,通过对三种冰片的60组样本训练,对未知的60组样本鉴别,建立了四种不同核函数的支持向量机模型。对比结果表明,径向基核函数构建的支持向量机对三种冰片的分类鉴别准确率均为100%,由此我们确定选择具有径向基核函数的支持向量机建立冰片种类的鉴别模型。此外,在含噪情况下,四种核函数SVM获得的总分类准确率都在85%以上,说明支持向量机具有很强的泛化能力。主成分分析结合支持向量机方法对冰片太赫兹光谱具有很好的分类和鉴别效果,为冰片等中成药剂的种类鉴别提供了一种新思路。  相似文献   

16.
大量废弃的塑料制品给生态环境造成严重破坏,当务之急是要对塑料进行分类回收.传统的分类方法普遍存在成本高,效率低,操作复杂等问题,不能满足工业生产的需要.激光诱导击穿光谱技术由于具备简单灵活,快速灵敏等优点,在物质鉴别领域有广泛应用.采用激光诱导击穿光谱技术结合主成分分析(PCA)和支持向量机(SVM)算法对20种塑料进...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号