首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 312 毫秒
1.
应用遗传算法拟合偏振X射线荧光重叠谱   总被引:1,自引:0,他引:1  
X射线荧光光谱分析由于受能量探测器分辨率的限制,谱线重叠干扰严重。不采用合适的重叠谱峰分解或曲线拟合技术,很难进行成分定性和定量分析。样品中的元素及谱线未知、背景基线不确定和模型初始参数不准确是曲线拟合中的最大困难。有多种算法可应用于光谱分析中的曲线拟合。文章将遗传算法应用于永磁材料偏振X射线荧光中的重叠谱分解,研究了进化策略对谱峰分解质量的影响,比较了遗传算法与传统算法的拟合结果。研究表明遗传算法在谱线严重重叠情况下仍具有较强的谱峰分解能力;群体初始化和进化策略的正确选择是该算法成功应用的关键;遗传算法具有全局搜索能力,对重叠谱峰的分辨能力优于标准Marquardt-Levenberg算法。  相似文献   

2.
由于轻元素自身特征X射线以及测量元素间特征X射线的相互干扰,受仪器能量分辨率的影响,实测X射线荧光光谱会产生严重重叠。以色谱分离度Rs作为计算谱峰重叠程度的指标,Rs低于0.5的重叠峰作为研究对象,提出一种峰锐化法结合双树复小波变换分解低分离度重叠峰的新方法,并对模拟X射线荧光光谱和实测X射线荧光光谱进行了新方法的验证。首先,在详细介绍峰锐化法和双树复小波变换分解重叠峰原理的基础上,通过仿真结果发现:当Rs=0.38时,两种方法皆不能单独实现重叠峰的分解;然而,峰锐化法处理后的信号不仅保留了原始信号的峰位特征,还出现了分离度明显变大的现象。因此,可以通过调节峰锐化法的权值实现对低分离度重叠峰的初步锐化,再对锐化后的信号做双树复小波变换,结果实现了对模拟重叠峰的分解,验证了新方法分解低分离度重叠峰的优越性。其中,双树复小波变换的分解层数为2~6层,第一层选择near_sym_b滤波器,第一层以上选择qshift_d滤波器,且当细节系数放大倍数为1~10时,重叠峰的分解结果更准确。然后,模拟了K元素K_α能量峰与其K_β能量峰的重叠光谱(Rs=0.44)以及Fe元素K_β能量峰与Co元素K_α能量峰的重叠光谱(Rs=0.34),用新方法对谱线进行处理,结果实现了重叠峰分解,且分解后峰位和峰面积的相对误差分别在1%和6%以内,验证了该方法分解光谱中低分离度重叠峰的可行性。最后,用新方法对实测的Ca元素X射线荧光光谱进行处理,最终也实现了重叠峰分解,且分解后的峰位相对误差分别为0.8%和0.7%。结果证明:峰锐化法结合双树复小波变换能够有效分解低分离度重叠峰,且在解决X射线荧光光谱中谱峰严重重叠的问题上具有实用性。  相似文献   

3.
针对X射线荧光分析中相邻谱峰之间的重叠问题,结合光谱形成过程的随机物理特性,提出了一种基于高斯混合统计模型(Gaussian mixture statistics model, GMSM)和遗传算法的重叠峰分解方法。首先,提出了重叠峰的GMSM描述方法,并分析了期望最大化法(expectation maximization, EM)的局部收敛问题;接着,将GMSM参数看作个体基因,以重叠峰随机数据序列的对数似然函数作为适应度函数,并给出了目标函数值的快速算法;然后,采用遗传算法的群体搜索技术找出全局最优解,实现重叠峰分解。该方法将所有测量的随机数据都当作“有用”来处理,其“有用”程度由其概率大小来体现,实现了原谱数据的“零损失”,搜索到的GMSM是全局最大概率意义下的“最佳匹配”模型,符合放射性测量过程的随机性。通过对四个严重重叠峰分解的实验表明,分解后的峰位、峰面积及标准偏差具有较高精度,最大误差分别为0.7道, 2.3%, 2.17%,特别适合于严重重叠的情况,并可广泛用于其他能谱重叠峰的分解。  相似文献   

4.
X射线荧光分析中相邻峰重叠的分解问题是十分常见的,谱峰重叠为谱的进一步定性分析和定量分析都带来了困难,而通过硬件手段来减少谱峰重叠的发生往往受资金和工作条件的制约,通常会选择通过数学手段得到重叠谱中各个子峰的相关信息来完成重叠谱的分解。结合光谱形成过程的随机物理特性,提出了一种基于高斯混合模型(GMM)的参数独立模型和参数关联模型,以及基于这两种模型和差分进化算法的重叠峰分解方法。GMM模型参数构成了差分进化算法个体基因,给出了目标函数的快速算法,通过随机生成初始种群,以种群中每个个体的适应度值和各个个体参数的约束条件为选择标准,避免了初值不当带来的局部收敛问题,并且将所有测量的随机数据参与到个体适应度值的运算当中,避免了原谱数据的损失。对模型参数相互独立和模型参数相关联两种情况进行了解谱分析,首先,对三峰重叠和四峰重叠进行仿真模拟分析,分解结果表明,基于GMM参数关联模型的解谱精度较GMM参数独立模型的解谱精度更高,三峰重叠时,参数独立模型和参数关联模型分别得到的权重最大误差为8.15%和2%,峰位最大误差为0.30%和0.06%,标准差的最大误差为7.5%和1.35%。四峰重叠时,参数独立模型和参数关联模型分别得到的权重最大误差为8.3%和4.3%,峰位最大误差为0.12%和0.13%,标准差的最大误差为5.04%和0.45%。然后通过实测三峰重叠谱的解谱分析表明,用这两种模型进行重叠谱的分解,分解结果相对误差和待测量元素的含量有关,随着待测元素含量的降低,分解结果精度会降低。仿真和实测都表明,基于高斯混合模型和运用差分进化算法的重叠谱进行解谱时,如果能够提前得到各个相互重叠小峰权重、均值、标准差之间的关系,建立GMM参数关联模型,减少寻优个体参数个数,对提高复杂峰的分解精度是非常重要的。  相似文献   

5.
在轻元素自身和实测元素间的特征X射线相互影响之下,受仪器能量分辨率的制约,实测X射线荧光光谱会产生严重重叠。以色谱分离度Rs判定谱峰重叠程度,针对Rs低于0.3的重叠峰,提出一种解析EDXRF光谱的新方法,并对模拟X射线荧光光谱进行了新方法的验证。首先,详细介绍基于四阶导的峰锐化法和提出误差小波变换。通过仿真结果发现:当Rs=0.27时,两种方法皆不能单独实现重叠谱峰的解析与识别;然而,原始信号在四阶峰锐化法处理后保留了峰位特征的同时,还出现了Rs明显增大的有利现象。因此,只需要通过调节四阶峰锐化法的权重完成对低分离度重叠峰的初步锐化处理,再对锐化后的信号进行误差小波变换,结果实现了对模拟重叠峰的分解,证明了结合后的新方法(锐化误差小波变换)针对极低分离度的重叠谱峰具有强大的分解能力。对两组重叠谱峰采用叠加的高斯函数进行模拟,分别是Mn的Kβ能量峰与Fe的Kα能量峰的重叠光谱(Rs=0.19)以及Al的Kα能量峰与其Kβ能量峰的重叠光谱(Rs=0.11)。用新方法对谱线进行处理,实现了重叠峰分解,结...  相似文献   

6.
近年来随着土壤重金属污染的加剧,和人们环境意识的逐渐提高,科研人员对快速检测土壤重金属含量方法的研究正在不断深化。目前,X射线荧光分析法(XRF)是广泛应用于土壤重金属污染检测的方法。但由于X射线荧光光谱仪的能量分辨率有限,而一些重金属元素的荧光产额较低,一些元素的相邻谱峰出现了重叠现象。针对XRF法中元素相邻谱峰的重叠问题,提出了一种基于麻雀搜索算法(SSA)的光谱重叠峰解析方法。首先,将从河北保定地区采样得到的土壤,制备出不同含水率、不同重金属元素含量的样本并用X射线荧光光谱仪获取原始光谱数据。接着,对光谱数据进行预处理,采用谱聚类算法剔除异常光谱样本,采用Savitzky-Golay五点二次去噪法和线性本底法完成对光谱的去噪和本底扣除,并对光谱净计数用随机数法生成大量模拟光谱数据,以备后续算法使用。然后,用期望最大化法(EM)对重叠峰进行初步解析,首先设置EM算法的初始参数,并将生成的模拟光谱数据代入EM算法,当达到迭代次数时,即可初步得到高斯混合模型(GMM)中各高斯峰的期望、方差和权重参数。但由于EM算法容易受初始参数设置的影响,且易陷入局部最优而导致结果不准确,还需对EM算法进一步优化。本研究采用SSA对GMM的各参数进行全局优化,在设置SSA算法的基本参数后,将100组由EM算法得到的参数作为该算法的初始种群,并设置合适的适应度函数,通过迭代,最终得到全局最优参数,实现了重叠峰的分解。SSA受参数设置的影响较小,相比于一些传统的优化算法,如遗传算法(GA)、蚁群算法(ACO)、粒子群算法(PSO)等,具有收敛速度快、不易陷入局部最优的特点,因此,采用此算法,可以达到较好的优化效果。通过对重叠峰解析结果的分析表明,该算法可在较少的迭代次数下得到较准确的解析结果,可广泛应用于能谱重叠峰解析。  相似文献   

7.
能量色散X射线荧光(EDXRF)光谱分析待测元素的信息主要反映在能谱的特征峰峰位以及特征峰净峰面积中。对于特征峰的准确检测是EDXRF光谱分析的关键。特征X射线之间的能量在低原子序数元素中相差很小,在实际测量过程中由其他一些因素干扰会导致EDXRF光谱中特征峰产生严重重叠,以EDXRF光谱中低序列元素的重叠峰作为研究对象,提出一种四次导数结合三样条小波变换处理低序列元素重叠峰的新方法。通过数学模型模拟重叠峰检测了该方法的可行性,并仿真了实测X荧光光谱数据进行检测得到良好的效果,通过使用了CIT-3000SY X 荧光元素录井仪实测T铅黄铜数据和混合轻元素数据荧光光谱作为验证。首先,介绍导数法以及三样条小波法分解重叠的原理。导数法阶数越高信号越畸形但可以有效提高重峰分离度,而三样条小波变换对低分离度重峰处理较为无力但能有效的保持峰型。通过Tsallis峰信号模拟重叠峰,模拟出3个峰信号,第1个峰和第2个峰的分离度R=0.33,第2个峰和第3个峰的分离度R=0.67,导数处理后信号任仍具有一部分重叠,但是导数处理后不仅保留了信号的峰位值,且出现了分离度变大的现象,而三样条小波对低分离度重叠峰的分解较为无力,但是对于分离度较大的重叠峰具有较好的效果,信号通过四次导增加分离度再进行三样条小波变换,通过调节样条小波分解层次的次数,然后对分解出的高频信号采取适当的系数进行放大,最后进行信号重构。实验实现了对模拟信号的分解。验证了此方法针对重叠峰分解具有可行性。实验采用分解4层的三样条小波变换以及放大6倍的高频信号。然后,处理仿真K元素的重叠光谱,实现了重叠峰的分解,通过仿真实验表明新方法能准确的识别峰位,结果表明只有1%之内的误差,证明了新方法对X荧光光谱重叠峰分解的适用性。最后用此方法对CIT-3000SY X荧光元素录井仪实测T铅黄铜元素数据以及混合轻元素数据X荧光光谱进行处理,实现了对重叠峰的分解,且分解后的峰位误差控制在1%之内,具有较高的准确率。实验结果证明:四次导数结合三样条小波变换能有效分离重叠峰,并且在处理X荧光光谱的重叠峰分解上具有实用性。  相似文献   

8.
针对X光谱分析研究中经常遇到的谱峰重叠问题,提出了一种基于标准差关联的高斯混合模型(GMM-SDR)和粒子群算法的重叠谱峰解析方法。首先,介绍了重叠峰的GMM-SDR模型,并以GMM-SDR参数构成粒子位置,给出了粒子目标函数及适应度值的快速算法;然后,利用粒子群算法的群体搜索能力,以搜索最优GMM-SDR模型,进而实现重叠峰的分解。初始值采用随机设定,将测量的所有随机数据作为一个整体,以其对模型的概率匹配程度作为适应度值,故该方法避免了初值设定不当带来的局部收敛问题,克服了传统曲线拟合方法对原始有用数据的破坏,所搜索到的模型是一个全局最优解。通过对四个及以下重叠谱峰的分解表明,该方法分解精度较高,其中,两峰重叠谱分解后的峰位、峰面积及标准差最大相对误差分别为0.4%,0.05%和2.07%,三峰重叠谱分解后的峰位、峰面积及标准差最大相对误差分别为1.2%,0.04%和0.74%,可适用于各种严重重叠谱峰的分解。  相似文献   

9.
基于Python语言设计了一款毛细管聚焦的X射线荧光光谱拟合软件QMXRS(quantitative analysis of micro-energy dispersive X-ray fluorescence spectra)并实现其在毛细管聚焦的X射线荧光光谱拟合方面的应用。QMXRS具有小波降噪、本底扣除、能量刻度、元素特征峰的识别、分峰和拟合、能谱的批处理和元素分布成像等功能。毛细管聚焦的X射线荧光分析技术采用毛细管X光透镜对X射线源激发出的X射线束进行聚焦导致X射线荧光光谱分布发生改变。这一变化影响了毛细管聚焦的X射线荧光光谱本底分布。因此QMXRS利用本底预估模型对毛细管聚焦的X荧光光谱本底进行本底分布的修正;同时在全谱拟合过程中,利用半高宽与能量的关系对高斯峰半高宽进行约束,减少高斯峰模型中变量,在保证全谱拟合收敛的同时提高了拟合速度。为验证上述方法的可行性,分别利用QMXRS, PyMca(python multichannel analyzer)和QXAS(quantitative X-ray analysis system)三款软件分析NIST 610标准样品的毛细...  相似文献   

10.
随着光谱分析及荧光检测技术的快速发展,单色荧光标记已无法对细胞样本进行精准判断,必须采用双染色或多色荧光标记来分析细胞内部结构。然而,使用光谱测量方法进行多色荧光分析时,由于通常使用多种标记物同时对待测细胞进行标记,发射光谱会产生部分光谱重叠,为了准确对其进行分析,需将重叠峰分解为独立谱峰。针对光谱重叠现象,提出了遗传算法优化BP神经网络(GA_BP)的重叠峰解析算法。首先确定了BP神经网络具体结构,并对重叠峰信号进行二次微分预处理,确定重叠峰中单峰个数及单峰位置,将其作为重叠峰信号的特征值送入BP神经网络的输入层;其次将BP神经网络权值及阈值初始化,利用遗传算法全局搜索的优势,进行算法初始种群及种群规模等最优参数的选取,通过选择、交叉、变异等一系列遗传进化操作进行寻优计算,得到包含BP神经网络最优权值和阈值的个体;然后确定网络最优参数并进行相应网络训练,使优化后的BP神经网络可从输出节点处获得独立单峰的峰宽及强度;最后结合二次微分处理得到的重叠峰特征值,即可分离出单个谱峰。以随机生成的多组高斯重叠峰数学模型作为实验数据进行仿真实验,结果表明该方法具有较高的精确度。其中,双峰重叠峰及三峰重叠峰分解后峰强度及峰宽的最大相对误差分别为0.30%, 3.57%和0.64%, 3.83%;同时也可对四峰重叠峰进行较为准确的分解。此外,将GA_BP网络模型与未经优化的BP神经网络模型作对比,结果表明GA_BP网络运行5步后即可达到预设的误差值,而未经优化的网络模型则需19步方可达到,进一步证明GA_BP网络模型收敛更快且误差较低。由此可见, GA_BP算法在重叠光谱分析中有较好的效果,并可应用于其他能谱重叠峰的分解,与传统方法相比具有明显的优势,具有一定的实用价值。  相似文献   

11.
由于元素间特征峰的相互干扰,受实验仪器能量分辨率的影响,当多个元素的特征峰峰位相近且展宽较宽时就会形成重叠峰。以分离度低且分解需求精度高的重叠峰为研究对象,提出一种基于多峰协同和纯元素特征峰面积归一化的重叠峰快速解析算法,并结合实际的X射线荧光光谱进行了新方法的验证。选取镝铁合金的X射线荧光光谱图作为实例,在该实验条件下镝Lα特征峰和铁Kα特征峰形成的重叠峰分离度约为0.273 5,同时还存在分离度较大但荧光产额较低的镝Lβ特征峰和铁Kβ特征峰。首先,配置浓度范围(7.8~8.2 mg·mL-1)的镝标液和浓度范围(1.8~2.2 mg·mL-1)的铁标液进行测量获取到纯元素谱图,分别进行面积归一化处理并取平均得到镝Lα峰和铁Kα峰的归一化特征峰。然后,使用镝、铁标液混兑出铁元素质量百分比范围在19.1%~21%,梯度为0.1%的20组样品液进行测量。由于重叠峰部分仅由镝Lα峰和铁K  相似文献   

12.
俎云霄  周杰 《中国物理 B》2012,21(1):19501-019501
Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.  相似文献   

13.
都月  孟晓辰  祝连庆 《应用光学》2019,40(3):461-467
使用光谱测量方法进行细胞多色荧光分析时, 发射光谱会产生部分光谱重叠, 为定性和定量分析造成了一定的困难。为此, 提出基于优化迭代算法的细胞荧光光谱解析算法, 建立重叠峰模型并确定单峰顶点; 根据每次构造峰面积的大小, 重新确定构造峰的构造方式, 最终得到模拟峰的顶点及面积信息。利用该算法对高斯函数叠加形成的重叠峰进行解析, 并与常规方法进行对比, 结果表明优化迭代算法解析误差稳定在0.15%以内; 加入随机噪声后, 解析误差可稳定在0.85%以内, 均优于另外两种算法。此外, 计算了该算法下的迭代效率, 结果表明该算法较常规方法提高了32.2%。  相似文献   

14.
水体高光谱中的混合效应问题是水体定量遥感中的难点。已有研究表明,仅依赖标量光谱信息难以解决复杂的水体混合光谱问题。广域水体污染物除光谱信息之外,还具有明显的空间分布特性。充分利用其空间维信息,可以作为遥感光谱维信息的有益补充,有利于水体复杂光谱的解混。以巢湖为例,HJ-1A HSI高光谱数据为数据源,辅以水面光谱测量数据,在空间地统计学和遗传算法理论基础上,利用地统计学中的变异函数模拟相邻空间两像元的分布差异,将邻域像元空间变异函数作为遗传算法目标函数的约束条件,建立基于协同克里格遗传算法的湖泊水体高光谱反演混合光谱空间信息分解模型,并对悬浮物浓度反演结果进行检验。结果显示,与常规混合光谱分解模型相比,混合光谱空间信息分解模型对悬浮物浓度的预测值与实测值相关系数为0.82,均方根误差9.25 mg·L-1,相关系数提高了8.9%,均方根误差下降了2.78 mg·L-1,表明该模型对悬浮物浓度具有较强的预测能力。该方法将水体的空间信息与光谱信息有效结合,可以避免水色参数光谱信号弱导致反演结果失真,同时由于高光谱波段多、信息量大,带来信息提取计算量大而复杂等问题,也为复杂水体混合光谱模型的求解和模型反演精度的提高提供了有效途径。  相似文献   

15.
基于温度变量的四维荧光光谱的石油类污染物测定   总被引:1,自引:0,他引:1  
三维荧光光谱结合多元校正分析对石油类污染物复杂多组分体系测定方法多谱图混叠,且易受到空白荧光和干扰物荧光影响降低了测定准确性。提出在三维荧光光谱中增加一维温度信息构造激发波长-发射波长-温度-样品(EEM-temperature data array)的四维荧光光谱数据阵列,应用四线性成分模型建立高维荧光光谱定性定量分析的方法。实验证明在15~25 ℃温度范围内,矿物油荧光光谱轮廓形状不随温度变化,而其强度随温度线性变化,满足四线性要求,这为构建四维荧光光谱发展高维数据的三阶校正提取更丰富的有效信息提供了可能。三阶校正不仅可以在干扰物共存的情况下对感兴趣组份进行定量测定,即具有“二阶优势”,还具有更高的选择性和灵敏性,可以对高共线性和背景干扰的重叠光谱表现更好的解析能力,即“三阶优势”。对0#柴油、97#汽油和机油为混合油待测组分,腐殖酸为水体干扰组分组成的复杂体系污染油样品为进行实验,得到的三维荧光光谱利用平行因子(PARAFAC)算法和交替惩罚三线性分解(APTLD)算法进行二阶校正分析,将三维荧光光谱在温度方向上堆叠构成增加温度维度的四维荧光光谱数阵,并将其利用四维平行因子算法(4-PARAFAC)和交替惩罚四线性分解(APQLD)算法进行三阶校正分析,比较,0#柴油、97#汽油和机油的预测结果表明增加了影响荧光光谱的温度因素构造的四维荧光光谱提高了有效信息提取能力,四维荧光光谱结合高阶校正算法能提高油种光谱识别和浓度精确检测,较传统的三维荧光光谱分析提高了回收率(recovery rate)和预测均方根误差(root mean square error of prediction,RMSEP),有利于石油类污染物的有效,准确,实时,绿色环保检测。同时指出了4-PARAFAC和APQLD算法各自的特点及其不同适用环境,为油类污染物检测具体情况提供算法选择依据。引入温度参量的四维荧光光谱结合三阶校正算法的检测技术较三维荧光光谱技术,在组分光谱定性分辨和浓度定量检测方面能对复杂体系油类污染物实现快速有效,绿色无污染地检测,实现“数学分离”更有效代替“化学分离”。  相似文献   

16.
在能量色散X荧光分析技术分析中,对谱信息的处理一直是研究的重点,谱光滑、寻峰、峰面积处理都是重中之重,本工作基于模拟退火算法原理,建立一种新的寻峰模型算法,该算法利用模拟退火寻找全局最优点的收敛特性,以Metropolis准则作为峰谷判断的基础,引入新的判定标准和峰谷数组,同时从谱道址两端同时收敛,以收敛到同一最优解为终止条件。同时,利用该算法与简单比较法、三阶导数法进行对比实验,结果证明该算法在X荧光光谱寻峰中有较强能力,在实际生产中具有一定价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号