首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
以凡纳滨对虾为研究对象,探索一种高效快速无损的新鲜度检测方法。挥发性盐基氮(TVB-N)是判断虾新鲜度的重要化学指标,然而传统方法耗时耗力,限制了大批量的实时检测。高光谱技术是一种集成图像和光谱信息的分析技术,高光谱图像上的每个像素包含整个波段的光谱信息,近年来,该技术已经被应用于肉类新鲜度检测。连续8 d采集了样品的860~1 700 nm高光谱数据,在去除异常样本后确定150组试验样本,每组采集254维光谱数据,对原始的高光谱图像进行黑白校正,并从高光谱图像中提取光谱数据。为确保所提取的光谱数据和TVB-N指数之间有对应关系,所选择的感兴趣区域的位置保持固定在虾样本的第二和第四肢。计算了感兴趣区域的平均光谱以获得光谱数据矩阵,该矩阵被转换成ASCII码并保存。同时,通过凯氏定氮法获得TVB-N真实值含量。为减少环境和虾表面的高含水量的干扰,有效地消除不相关的信息和噪声,预处理方法是多元散射校正(MSC)算法,并选择出7个敏感波段,分别为875, 894, 919, 953, 983, 1 024和1 094 nm。最后,以120组训练集样本,建立了凡纳滨对虾TVB-N总量的定量预测...  相似文献   

2.
羊肉新鲜程度受多种因素影响,其检测一般要从感官性状、分解的理化产物和微生物繁殖程度等方面进行。然而基于单一指标的羊肉新鲜度检测局限性大,适用性低,很难综合评价羊肉新鲜程度,而且传统检测方法操作复杂,效率低,不能满足日常实际需求。高光谱成像技术作为一种快速、无损、高效的检测技术,可以有效地获取冷鲜羊肉腐败过程中表面、内部组成和理化变化信息。提出一种基于改进深度森林算法的冷鲜羊肉新鲜度评价模型,增加特征筛选挖掘与多个评价指标相关的光谱信息,同时增加层增长控制有效防止模型过拟合。采集了0~14天4℃贮藏环境中羊肉样本的400~1 000 nm高光谱数据,采用实验室方法测定了样本的挥发性盐基氮(TVB-N)、 pH值、菌落总数(TAC)和大肠菌群近似数(ANC)指标值。选择感兴趣区域提取光谱数据,通过S-G平滑滤波法和多元散射校正法对原始光谱数据进行预处理,利用连续投影法提取了18个特征波段。将数据集按照3∶1划分为训练集和测试集;利用本文提出的改进深度森林算法建立新鲜度等级分类模型。结果表明,新鲜度等级分类总体精度为0.985 7,并利用hamming loss、 one-error、 ra...  相似文献   

3.
基于高光谱的鸡蛋新鲜度检测   总被引:1,自引:0,他引:1  
借助高光谱成像仪采集贮期白壳鸡蛋的透射高光谱数据,对比测量常规表征新鲜度的哈夫单位值,用Matrix Laboratory (MATLAB)和Statistical Analysis System (SAS)等软件,同时结合化学计量法对样品鸡蛋的高光谱数据进行分析处理,建立了基于高光谱技术的鸡蛋新鲜度预测模型。选用高光谱500~1 000 nm的波段作为敏感波段进行研究,用马氏距离剔除鸡蛋异常样本数据,并对鸡蛋高光谱数据进行了微分校正,通过比较发现高光谱二阶微分与鸡蛋哈夫单位值之间的线性度高,因此选用高光谱二阶微分数据来进一步研究,并对其进行了小波去噪、光滑处理及标准化处理。选用近年新提出来的competitive adaptive reweighted sampling (CARS)变量选取法对高光谱进行降维,提取出32个特征参数,建立了白壳蛋基于全波段的偏最小二乘法(partial least square, PLS)预测模型和基于特征参数的多元回归模型,验证集的相关系数分别为0.88,0.93,均方误差分别为7.565,6.44。用验证集的蛋对基于高光谱二阶微分全波段的偏最小二乘法预测模型、基于特征参数的多元回归模型分别进行验证,两个模型判别白壳蛋新鲜和不新鲜的最高准确率达100%,88%。  相似文献   

4.
基于近红外光谱的淡水鱼新鲜度在线检测方法研究   总被引:1,自引:0,他引:1  
新鲜度是反映鱼类品质以及可否食用的重要指标,在线检测直接关系到食品质量与安全的实施应用,因此对淡水鱼新鲜度进行在线无损检测具有重要意义。应用近红外光谱对淡水鱼新鲜度进行在线检测,试验装置采用自行搭建的淡水鱼近红外光谱在线采集装置,试验时样品在输送链上以0.5 m·s-1的速度运动,采集其近红外漫反射光谱(900~2 500 nm),并用支持向量机(support vector machine, SVM)建立淡水鱼新鲜度在线检测模型。采用光谱理化值共生距离(sample set partitioning based on joint X-Y distance algorithm, SPXY)算法对样本集进行划分,其中校正集111条(新鲜57条,变质54条)、测试集37条(新鲜19条,变质18条),通过对比不同的光谱预处理方法对预测结果的影响,明确了一阶导结合标准化预处理为最优光谱预处理方法,经过该方法预处理后所建模型对校正集的正确识别率为97.96%,对测试集的识别率为95.92%。为了提高模型运行速度对建模所用光谱变量进行优化,分别采用遗传算法(genetic algorithm, GA)、连续投影算法(successive projection algorithm, SPA)和竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS) 三种不同的特征变量选择方法对特征波长进行筛选,通过建模比较分析确定CARS为最优波长选择方法,以所选的10个特征波长建立淡水鱼新鲜度支持向量机检测模型,模型对校正集的正确识别率为100%,对测试集的识别率为93.88%。该研究可为近红外光谱用于淡水鱼新鲜度在线检测提供技术支持。  相似文献   

5.
猪肉是我国主要肉类消费产品,其新鲜度与居民健康息息相关。目前感官检测、理化检测、微生物检测是其新鲜度的通用检测方法,但感官检测存在可靠性、可比性差,理化检测和微生物检测存在耗时长、操作繁琐、破坏样品等问题,因此建立猪肉快速无损检测方法应用意义重大。拉曼光谱作为一种检测技术,具有快速、无损的特点,仅用激光探头照射样品就可获得样本拉曼谱图,便携式拉曼光谱更是为食品现场检测提供了新途径,有望实现加工业快速实时大批量检测。目前未见拉曼光谱技术快速检测猪肉新鲜度理化指标的研究,因此采用便携式拉曼光谱仪对冷藏猪瘦肉新鲜度进行快速检测。对随时间变化的样本进行拉曼光谱采集并同时监测其对应的新鲜度指标,如挥发性盐基氮(TVB-N)、 pH、颜色L*值、 a*值、 b*值,采用标准正态变量变换(SNV)、曲线平滑(SG)、归一化(NL)、多元散射校正(MSC)、基线校正(BL)、去趋势化处理(DFA)等单方法对拉曼光谱进行预处理,采用偏最小二乘回归(PLSR)建立基于全波段光谱的猪瘦肉新鲜度指标定量预测模型。结果表明,各指标全波段PLSR模...  相似文献   

6.
为了实现原料肉新鲜度参数的无损在线实时评估,基于双波段可见/近红外反射光谱(350~1 100和1 000~2 500 nm)技术建立了原料肉新鲜度主要指标的在线检测系统。研究设计了装置的光源单元、光谱采集单元、控制单元和驱动单元,优化设计了光源固定支架和安放角度,编写了相应的控制程序,开发了实验室用和便于在不同生产线应用的两套在线检测系统。首先,对试验参数(传送带速度和样品到透镜入光口距离)进行了优化研究,通过光谱相似度比较和显著性分析,确定传送带速度是275 mm·s-1、距离是12 cm时能够获得更加稳定的光谱信号。然后,基于该试验参数,分别在静止和在线条件下采集了贮藏时间为1~13 d共50个猪肉样本的反射光谱,并利用抛物线拟合法对双波段光谱进行融合,以获取整条覆盖可见及近红外区域的完整光谱。为了使两个波段范围内的光谱数据点权重相同,在整个波段范围内均匀分布,借助三次样条插值法将所有光谱数据点以2 nm为间隔进行重新排布。采用窗口移动多项式最小二乘拟合法对光谱作平滑处理,采用标准正态变量变换对每条光谱进行标准化预处理,分别建立了静止和在线条件下新鲜度主要表征指标-颜色(L*,a*和b*)、pH和挥发性盐基氮的预测模型,以此验证所搭建系统的可靠性。经过对比分析,发现在线条件下的建模结果不如静止状态下的建模结果,这可能与在线采集时光谱存在漂移现象有关。进一步尝试利用一阶导数处理来消除基线漂移强化谱带特征,并对一阶导数和标准化处理顺序对建模结果的影响进行了探讨。结果发现先经过一阶导数再经过标准化处理,能更好地消除外部干扰造成的影响,建模结果更佳。在该处理方式下,基于第一波段光谱建立了颜色参数(L*,a*,b*)的预测模型,基于双波段光谱建立了pH和挥发性盐基氮的在线检测模型,预测相关系数分别为0.955 3,0.924 7,0.955 1,0.961 5和0.966 8。最后,为了验证模型的适用性,基于开发的便于在不同生产线应用的在线检测系统,利用独立的20个样本对在线模型进行外部验证,对颜色参数(L*,a*,b*),pH和挥发性盐基氮的预测相关系数分别为0.918 9,0.914 1,0.947 7,0.950 4和0.960 6。研究结果表明,该系统通过双波段光谱的实时采集和融合,可以获取更多反应样本内部信息的光学信号,具有更强的检测能力。结合设计的光路等其他硬件单元,可以同时获取样本表面更大区域的反射光谱信息,从而实现对原料肉新鲜度主要表征参数的无损、在线、实时评估。该系统便于组装和拆卸,可以适应不同企业生产线的实际需要,具有较强的实用价值和较好的市场前景。  相似文献   

7.
提出一种浅层宽度学习(SBLN)的模型框架,应用于近红外高光谱(NIRHSI)快速分析。通过调试SBLN模型结构参数,针对网络节点的连接权重进行自适应调试,在光谱维度上挖掘NIRHSI数据中的特征信息,结合偏最小二乘(PLS)法优化模型预测结果。实验以柚子果肉NIRHSI检测为例,建立SBLN-PLS模型定量预测柚子果肉中的有机酸(OA)含量。结果表明,最优SBLN模型结构由95个扩展节点和31个输出节点构成,对应的PLS预测均方根偏差为0.578 g·kg-1。所提出的SBLN算法框架能够有效应用于柚子果肉OA含量检测的高光谱快速定量分析,有望推广应用于其他农副产品的绿色检测。  相似文献   

8.
羊肉新鲜度受多种因素影响,通常由多个指标来综合评价,常规试验操作复杂不适合在线检测。高光谱成像数据能够反映羊肉新鲜度变化过程中多种成分的变化信息,但是光谱特征提取与评价模型的建立对最终结果影响较大。为了研究高光谱成像与多指标的快速检测羊肉新鲜度的可行性,提出一种稀疏核典型相关分析方法,借助实验室测定的多个标准值,研究多指标的羊肉新鲜度无损检测。采集了70个代表各级新鲜程度的羊肉样本400~1 000 nm高光谱图像,采用实验室方法测定了挥发性盐基氮(TVB-N)和菌落总数(TAC)标准值,选择感兴趣区域(ROIs)提取代表性光谱图像,利用所提出的特征提取方法提取光谱特征信息,并按照3:1划分校正集和预测集,利用三层神经网络进行分类识别试验。结果表明,新鲜度等级分类总体精度(OA)为0.939 3,Kappa系数为0.906 0,均方根误差(RMSEC)为0.297。研究表明,所提出的多指标光谱特征提取方法可用于快速无损检测羊肉新鲜程度,为采用高光谱成像综合多个新鲜度检测指标,改善由于单一检测指标造成评价模型的适用性和鲁棒性提供了基础。  相似文献   

9.
基于高光谱成像技术的滩羊肉新鲜度快速检测研究   总被引:1,自引:0,他引:1  
滩羊肉的新鲜度是其品质安全的一个重要衡量指标,也是肉品品质安全控制的关键环节。挥发性盐基氮(TVB-N)是表征肉品腐败过程主要的化学信息,能有效地评价出滩羊肉的新鲜度。然而,TVB-N的传统检测过程繁琐且人为影响因素大,检测结果缺乏客观性和一致性,不能满足当今肉品检测过程无损、快速、高效的需求。高光谱成像技术符合现代检测技术向多源信息融合方向发展的需求,已在食品安全领域得到广泛应用。利用可见/近红外高光谱成像技术(400~1 000 nm)结合动力学和化学计量学方法以及计算机编程技术,将同时实现滩羊肉贮存期内(15 ℃环境)TVB-N 浓度的快速检测和贮藏期的预测。研究中提取每个样品感兴趣区域的平均光谱数据,选用蒙特卡洛算法剔除异常样本。采用X-Y共生距离(SPXY)法划分为校正集和预测集,分别选用多元散射校正(multiplicative scatter correction, MSC)、卷积平滑(savitzky-golay, SG)、标准变量变换(standard normalized variate, SNV)、归一化(normalization)、基线校准(baseline)五种方法对原始光谱数据进行预处理,优选出最佳预处理方法。采用竞争性自适应重加权法(campetitive adaptive reweighted sampling, CARS)和连续投影算法(successive projections algorithm, SPA)分别提取了21个和6个特征波长。为优化模型并提高其模型精度,采用SPA算法对 CARS 所选特征波长进行二次提取,优选出14个特征波长。基于所提取的特征波长建立TVB-N浓度的PLSR模型,优选出 SNV-CARS-SPA-PLSR 模型具有较高的预测能力(R2c=0.88,RMSEC=2.51, R2p=0.65, RMSEP=2.11)。同时,建立了滩羊肉TVB-N变化与贮藏时间的动力学模型,并将优化后的光谱模型和动力学反应模型相结合建立了滩羊肉光谱吸光度值与贮藏时间的高光谱动力学模型,实现对贮藏时间的预测,并通过 PLS-DA判别模型对滩羊肉贮藏时间进行判别分析(校正集判别准确率为100%,预测集为97%)。研究表明,利用可见/近红外高光谱成像技术结合动力学和化学计量学方法以及计算机编程技术,可以有效地实现滩羊肉品质智能监控与质量安全快速无损分析,为开发实时在线检测装备提供理论参考。  相似文献   

10.
基于高光谱图像的即食海参新鲜度无损检测   总被引:1,自引:0,他引:1  
新鲜度是即食海参加工品质调控和贮藏品质监控的关键指标。针对感官评定和现有理化检测无法满足即食海参产品大批量、标准化、工业化生产问题,提出了一种基于高光谱图像的即食海参新鲜度快速无损检测方法,通过图像主成分分析和波段比运算相结合,优选特征波长和图像;依据海参腐败机理,建立图像纹理特征与即食海参新鲜度等级间的关联模型,实现即食海参新鲜度无损、快速评价。首先针对高光谱图像巨大的数据量展开降维研究。根据即食海参体壁光谱吸收特性,以具有明显化学吸收特征的波长(474和985 nm)为分界点,获得包括全检测波段(400~1 000 nm)在内的六个待处理波段,通过分段图像主成分分析实现待测波段的优选,利用权重系数和波段比图像运算,最终将686和985 nm波段比图像确定为特征图像。面向特征图像的感兴趣区域(ROI),构建灰度共生矩阵(gray-level co-occurrence matrix, GLCM)、灰度梯度共生矩阵(gray-gradient co-occurrence matrix, GGCM)、改进的局部二元模式纹理描述子(local binary pattern,LBP),分别提取纹理参数作为输入,以挥发性盐基氮(total volatile basic nitrogen, TVB-N)检测为标准,建立经粒子群优化的BP 神经网络(back propagation,BP)即食海参新鲜度判别模型,新鲜度等级判别准确率分别为90%,95%和80%。结果表明,即食海参高光谱图像灰度梯度共生矩阵的纹理特征用于新鲜度判别效果较好。为即食海参新鲜度快速无损检测方法研究和仪器开发提供了理论基础和数据支持。  相似文献   

11.
基于高光谱的番茄叶片过氧化物酶活力测定   总被引:4,自引:0,他引:4  
用高光谱图像技术结合化学计量学方法,实现了番茄叶片中过氧化物酶(POD)活性的快速检测。利用高光谱图像的光谱特征建立预测模型步骤为:采集高光谱图像数据、获取光谱曲线、光谱数据预处理、提取特征波段、建立POD酶活性预测模型。与预处理方法(SG,SNV,MSC,1-Der和2-Der)相比,DOSC预处理对POD酶活性预测效果最好。研究表明:以443,464,413,410,401,402,426和926 nm这八个特征波段的光谱数据建立的DOSC-SPA-PLS模型对POD酶活性预测结果为Rp=0.935 3,RMSEP=37.80 U·g-1。这说明高光谱图像技术测定番茄叶片POD活性具有可行性,且预测结果令人满意,这为抗氧化酶活性和番茄植株生长状况的动态检测提供了新的方法。  相似文献   

12.
高光谱成像的柑橘病虫害叶片识别方法   总被引:1,自引:0,他引:1  
为监测柑橘生长状况,实现病虫害无损识别,利用高光谱成像技术和机器学习方法进行柑橘病叶分类研究。使用高光谱成像仪采集46片柑橘正常叶、46片溃疡病叶、80片除草剂危害叶、51片红蜘蛛叶和98片煤烟病叶的高光谱图像,在478~900 nm光谱范围内对每个叶片一个或多个发病区提取5×5的感兴趣区域(ROI),将ROI内每个像素的反射率值作为光谱信息,则一个ROI得到25个光谱信息样本,最终五类叶片共得到13250个光谱样本。利用随机法将全部样本划分为9 938个训练集和3 312个测试集。分别采用一阶求导(1stDer)、多元散射校正(MSC)和标准正态变换(SNV)三种方法对原始光谱信息进行预处理,对不同预处理方法后的数据采用主成分分析法(PCA)提取特征波长。1st Der预处理后得到7个特征波长,分别是520.2,689.0,704.8,715.4,731.2,741.8和757.6 nm;MSC和SNV预处理后得到7个相同的特征波长,分别是551.9,678.5,704.8,710.1,725.9,731.2和757.6 nm;原始光谱得到7个特征波长,分别是525.5,678.5,710.1,720.7,725.9,757.6和762.9 nm。分析PCA后的样本分布散点图可知,正常叶片、溃疡病叶片和红蜘蛛叶片样本有一定程度聚类,除草剂叶片和煤烟病叶片样本有大量重叠,仅依据PCA不能完成病虫害叶片的识别。对全波段(FS)和PCA特征波长数据在不同预处理方法下进行支持向量机(SVM)和随机森林(RF)建模,结果表明:数据在1stDer预处理方法下识别效果最佳,1st Der-FS-SVM模型总分类精度(OA)为95.98%,Kappa系数为0.948 2,1st Der-FS-RF模型OA为91.42%,Kappa系数为0.889 2,1stDer-PCA-SVM模型OA为90.82%,Kappa系数为0.881 6,1stDer-PCA-RF模型的OA为91.79%,Kappa系数为0.894;对PCA选择的特征波长数据建模,SVM和RF模型下识别率均达到84%,全波段下模型识别率在88%以上,FS数据建模效果优于PCA特征波长。研究结果表明,高光谱成像技术结合机器学习方法进行柑橘叶片分类是可行且有效的,为柑橘病虫害的无损准确识别提供理论根据。  相似文献   

13.
植物病害的自动早期检测对于作物精确保护至关重要。提出了一种基于多维光谱序列(multi-dimensional spectral series, MDSS)和加权随机森林(weighted random forest, WRF)的番茄灰霉病早期诊断与鉴别方法。目的是利用叶片多个观测维度的光谱曲线整体变化趋势建立作物病害检测模型,以期在肉眼明显可见叶面病斑前对作物病害实现诊断。将健康叶片接种灰霉病菌第3天作为叶片成功染病第1天。试验首先采集番茄健康叶片和染病叶片7天内每天的高光谱图像,提取感兴趣区域并计算平均光谱作为初始光谱数据,经筛选共得到(156×7)组有效样本。将样本数据按时间顺序拆分成分别包含1~7个维度的光谱数据形成多维原始光谱序列,为增加维度间差异性,相邻原始光谱序列相减构成多维关联光谱序列。分别采用符号聚合近似估计(symbolic aggregate approximation, SAX)和符号傅里叶近似估计(symbolic Fourier approximation, SFA)两种符号化方法将光谱序列离散成局部辨别性特征。基于多维光谱序列的局部辨别性特征建立加权随机森林(MDSS-SAX-SFA-WRF)分类模型,实现病害早期检测。相应地,基于单维光谱序列(single-dimensional spectral series, SDSS)的番茄灰霉病识别模型被作为基准模型与MDSS-SAX-SFA-WRF模型比较。试验结果显示,MDSS-SAX-SFA-WRF检测模型在包含2至7个光谱序列维度的56个测试样本数据中均获得90%以上识别准确率,在包含5个光谱序列维度测试集中得到最高99%的识别准确率,较SDSS-SAX-SFA-MRF检测模型在染病第5天的识别率高8.2个百分点。另外受随机干扰的影响,SDSS-SAX-SFA-MRF模型准确率在染病5~7 d出现大幅度回落至最低84%,MDSS-SAX-SFA-WRF模型识别率在肉眼可见病斑阶段依然保持超过98%的较高检测水准,未过度回落。因此,提出的基于多维光谱曲线整体变化趋势和加权随机森林(MDSS-SAX-SFA-WRF)的分类模型能够有效实现番茄灰霉病早期检测,并具有较强的鲁棒性,为染病初期的番茄灰霉病鉴别提供新思路。  相似文献   

14.
鸡蛋新鲜度是反映鸡蛋内部品质的一个重要指标。为了能够实现鸡蛋新鲜度的快速无损检测,利用微型光纤光谱仪采集鸡蛋550~950 nm的透射率光谱曲线,与鸡蛋的哈夫单位值进行了定量分析。通过不同的预处理方式分别结合偏最小二乘回归(partial least squares regression, PLSR)与支持向量回归(support vector regression, SVR)建立模型,比较了不同模型的预测结果,发现一阶微分结合SVR能够实现较好地预测,且利用SVR建模要优于PLSR。为了提高运算效率,减少无用信息对建模的不良影响,分别利用线性降维主成分分析法(principal component analysis, PCA)与非线性降维局部线性嵌入(locally linear embedding, LLE)对一阶微分后的光谱数据降维,比较两种降维方法的预测效果,得出了LLE降维要优于PCA降维,其训练集和预测集的相关系数与均方根误差分别为92.2%,7.21和91.1%,8.80,训练集交叉验证的均方根误差相比减少了0.79。实验结果表明,利用局部线性嵌入结合支持向量回归进行非线性建模,能够提高鸡蛋新鲜度的预测能力,表明该方法对鸡蛋新鲜度的可见/近红外光谱检测可行。  相似文献   

15.
高光谱成像的猕猴桃糖度无损检测方法   总被引:1,自引:0,他引:1  
猕猴桃糖度是重要的猕猴桃内部品质衡量指标.传统的糖度检测耗时且有损样品,有效无损检测猕猴桃糖度含量对于其品质分级、储藏销售具有重大意义.基于高光谱成像技术的常见果蔬品质无损检测方法多数是采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、主成分分析(PCA)、迭代保留信息变量法(IRIV)等算法中的某个单一...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号