首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
二维Su-Schrieffer-Heeger(SSH)模型是在拓扑物理领域受到广泛研究的一种模型,具有许多独特的物理性质.它属于高阶拓扑绝缘体,在第二条和第三条能带间会产生具有连续谱束缚态(bound states in the continuum,BICs)性质的角态.本文首先介绍了二维SSH模型的拓扑性质,在此基础上论证了第二条和第三条能带何时会在整个布里渊区上产生能隙.随后,计算了模型的电荷极化分布和电荷密度分布,证明了当x方向上胞内跃迁几率和胞间跃迁几率较大时,x方向的边缘电荷极化激发了y方向的边缘态,反之亦然.同时,边缘电荷极化激发了角上的异常填充,产生了具有良好局域性与鲁棒性的拓扑角态.最后,构建了一种声学谐振腔模型,并证明了该模型可以较好的模拟各向异性二维SSH模型的拓扑性质.  相似文献   

2.
用实验和数值模拟的方法研究了一个有限周期性弦球链系统的振动模.观察到了振动谱的带状结构,表面态模.考察了表面态模的振动频率与第一个小球距弦端的距离τ的关系.用离散差分法对该弦球链系统作了数值模拟并对实验和数值模拟结果作了简单讨论.  相似文献   

3.
王青  盛利 《物理学报》2015,64(9):97302-097302
用数值方法研究了拓扑绝缘体薄膜体系在外加垂直磁场 作用下其边缘态的性质. 磁场的加入通过耦合k+eA, 即Peierls势替换关系和 该作用导致的Zeeman交换场体现在哈密顿量中. 考虑窄条圆环状结构的二维InAs/GaSb/AlSb薄膜量子阱材料, 当其处于拓扑非平庸状态, 即量子自旋霍尔态时, 会出现受时间反演对称性保护的两支简并边缘态, 而在垂直磁场的作用下, 时间反演对称性被破坏, 这时能带将形成一条条的朗道能级, 原来简并的两支边缘态也会分开到朗道能级谱线的两侧, 从电子态密度的空间分布情况则可以看到边缘态分别局域在材料的两个边界. 随着磁场的增大, 位于同一边界上的不同 自旋极化的边缘态将出现分离: 一支仍然局域在边缘, 另一支则随外加磁场的增加而有逐渐演化到材料内部的趋势. 文中还计算了同一边界上的两支边缘态之间的散射, 结果表明由于两个边缘态在空间发生分离, 相互之间的散射被很大的压制, 得到了其散射随磁场增加没有明显变化的结论, 所以磁场并不会增强散射过程, 也没有破坏体拓扑材料的性质, 说明了量子自旋霍尔态在没有时间反演对称的情况下也可以有较强的稳定性.  相似文献   

4.
拓扑电子材料因为具有非平庸的拓扑态,所以会展现出许多奇异的物理性质.本文通过第一性原理计算对应变调控下的烧绿石三元氧化物Tl2Ta2O7中的拓扑相变进行了研究.首先分析了原子轨道投影能带,发现体系费米能级附近O原子的(px+py)与pz轨道发生了能带反转,再构造了紧束缚模型计算得到体系的Z2拓扑不变量确定了其拓扑非平庸性,最后研究了表面态等拓扑性质.研究发现未施加应变的Tl2Ta2O7是一个在费米能级处具有二次能带交叉点的半金属,而平面内应变会破缺晶体对称性进而使体系发生拓扑相变.当对体系施加–1%的压缩应变时,它会转变为狄拉克半金属;当对体系施加1%的拉伸应变时,体系相变为拓扑绝缘体.本研究对于在三维材料中调控拓扑相变有着较重要的指导意义,并且为低能耗电子器件的设计提供了良好的材料平台.  相似文献   

5.
在拓扑系统中,探索相互作用引起的新奇的拓扑泵浦现象日益受到人们的关注,其中包括由相互作用诱导的非线性拓扑泵浦.本文提出可以利用超冷原子动量光晶格系统,有效地模拟一维非线性的非对角Aubry-André-Harper (AAH)模型,研究非线性拓扑泵浦的实验方案.首先,通过数值方法计算了一维非对角AAH模型的非线性能带结构随相互作用强度的变化,得到了非线性系统的孤子态解.然后,分析了不同相互作用强度下孤子态的拓扑输运,发现其质心的移动距离具有量子化的输运特征,由所占据能带的陈数决定,并讨论了非线性拓扑泵浦对相互作用符号的依赖性.同时还计算了在不同相互作用强度下,系统最低能带和最高能带对应陈数的分布.最后,基于7Li原子的动量光晶格实验系统,提出了一个非线性拓扑泵浦方案.本文构造了一种近似于孤子态分布的初始态并演示了其动力学演化过程,并分析了绝热演化条件对泵浦过程的影响.结果表明,在动量晶格系统中演示非线性拓扑泵浦具有可行性.本文的工作为在超冷原子系统中研究非线性拓扑泵浦提供了一个可行的途径,有助于进一步探测非线性引起的拓扑相变和边界效应.  相似文献   

6.
在Su-Schrieffer-Heeger (SSH)原子链中,电子在胞内和胞间的跳跃依赖于其自旋时,即SSH原子链存在自旋轨道耦合作用时,存在不同缠绕数的非平庸拓扑边缘态.如何探测自旋轨道耦合SSH原子链不同缠绕数的边缘态是一个重要问题.本文在紧束缚近似下研究了自旋轨道耦合SSH原子链的非平庸拓扑边缘态性质及其零能附近的电子输运特性.研究发现四重和二重简并边缘态的缠绕数分别为2和1;并且仅当源极入射电子的自旋被极化(铁磁电极)时,自旋轨道耦合SSH原子链在零能附近的电子输运特性才能反映其边缘态的能谱特性.尤其是,随着自旋轨道耦合SSH原子链与左、右导线之间的耦合强度由弱到强改变,对于缠绕数为2的四重简并边缘态,入射电子在零能附近的透射峰数目将从4个变为0;而对于缠绕数为1的二重简并边缘态情形,其透射峰数目将从2个变为0.因此,在源极为铁磁电极的情形下,通过观察自旋轨道耦合SSH原子链在零能附近电子共振透射峰的数目随着其与左、右导线之间耦合强度的变化,来探测其不同缠绕数的边缘态.上述结果为基于电子输运特性探测自旋轨道耦合SSH原子链不同拓扑性质的边缘态提供了一种可选择的理论方案.  相似文献   

7.
叶鹏 《物理学报》2020,(7):218-245
在有对称性保护的条件下,拓扑能带绝缘体等自由费米子体系的拓扑不变量可以在能带结构计算中得到.但是,为了得到强关联拓扑物质态的拓扑不变量,我们需要全新的理论思路.最典型的例子就是分数量子霍尔效应:其低能有效物理一般可以用Chern-Simons拓扑规范场论来计算得到;霍尔电导的量子化平台蕴含着十分丰富的强关联物理.本文将讨论存在于玻色和自旋模型中的三大类强关联拓扑物质态:本征拓扑序、对称保护拓扑态和对称富化拓扑态.第一类无需考虑对称性,后两者需要考虑对称性.理论上,规范场论是一种非常有效的研究方法.本文将简要回顾用规范场论来研究强关联拓扑物质态的一些研究进展.具体内容集中在"投影构造理论"、"低能有效理论"、"拓扑响应理论"三个方面.  相似文献   

8.
邓天舒 《物理学报》2022,(17):24-37
非厄米趋肤效应是近几年非厄米物理研究领域中的热点问题,它揭示了非厄米系统中体态波函数和能谱计算会敏感依赖于边界条件的新奇现象.人们提出广义布里渊区的概念用以刻画非厄米系统中的体态波函数和能带性质.基于广义布里渊区计算的非布洛赫拓扑数可以重新构建非厄米拓扑体边对应关系.然而,过去关于非厄米趋肤效应的讨论主要针对开放边界条件,如果采用畴壁边界条件,广义布里渊区和非布洛赫拓扑数的计算都需要重新考虑.本文综述了近几年关于畴壁边界条件下非厄米趋肤效应的若干研究工作,首先从一般的一维非厄米单带模型出发,推导广义布里渊区方程的一般形式;然后回顾了非厄米SSH (SuSchieffer-Heeger)模型中广义布里渊区和非布洛赫拓扑数的计算;最后在一维光量子行走的系统中,介绍了实验上非厄米趋肤效应的实现和非厄米拓扑边缘态的探测.  相似文献   

9.
基于声子晶体拓扑特性构造的弹性波拓扑态在波调控方面具有背散射抑制和路径缺陷免疫等优异特性,受到广泛关注.本文设计了一种声子晶体板结构,通过在初始元胞中引入具有一定旋转角度的三角形穿孔实现对称性破缺,从而构造四重简并态.与现有利用能带"区域折叠"进行构造的方法相比,该方法简化了声子晶体的元胞构型.元胞的主要变量为三角形穿孔围绕其中心旋转角度θ,研究发现,旋转角度θ=0°时,元胞能带结构存在两个二重简并态,调整旋转角度到±33°时,布里渊区中心G点处出现四重简并态,并发现旋转角度越过±33°时均会发生能带反转,这表明调整晶体结构参数θ使得体系经历拓扑相变.利用具有不同拓扑相的声子晶体组成超元胞,并通过计算其投影能带,发现能带结构中存在弹性波带隙以及不同赝自旋方向的两种边界态.在此基础上,构造多种不同类型的弹性声子晶体板,验证了拓扑边界态对弹性波传播的强背散射抑制、缺陷免疫单向传播和多波导通道开关特性.本文中所设计的弹性声子晶体板具有结构简单、特性易调的特点,为利用拓扑态实现弹性波调控提供了一个可行方案.  相似文献   

10.
方静云  孙庆丰 《物理学报》2022,(12):201-209
石墨烯是一种特殊的二维材料,其独特的能带结构允许人们通过电场来调控其载流子的类型和浓度,因此,在构建双极型纳米电子器件方面具有潜在应用前景.本文基于紧束缚格点模型,利用非平衡格林函数方法及Landauer-Büttiker公式,研究了石墨烯p-n结在磁场中的电输运热耗散问题.在强磁场作用下,结的两边均处于量子霍尔相,存在拓扑保护的手性边缘态.直觉上,这种拓扑保护的手性边缘态应当是无热耗散的.但本文研究发现,当有耗散源时,尽管手性边缘态受到拓扑保护,热耗散却依然可以发生.对于完美的石墨烯,单极结输运时热耗散发生在体系边缘;偶极结输运时在体系边缘和结的界面处均可以发生热耗散.当无序存在时,无论单极结还是偶极结,无序均能增强热耗散.此外,本文还研究了不同位置处的电子能量分布,发现热耗散是否发生只取决于电子是否处于非平衡分布.这些结果表明拓扑只能保护电子的传播方向,却不能禁止热耗散的发生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号