首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This work focuses on the understanding of the electrophoretic behavior of flexible chains of polystyrenesulfonates (PSSs) in free solution. It deals mainly with the variation of the electrophoretic mobility with (i) the polymerization degree (N) of fully sulfonated PSSs and (ii) the sulfonation rate of randomly sulfonated PSSs. In both cases, the electrophoretic mobility was modeled following a semi-empirical approach which involves parameters retaining a physical meaning. Fully sulfonated PSS oligomers, having a length smaller than or similar to the Debye length, exhibit a particular electrophoretic behavior, in-between that observed for multicharged small molecules and that for polyelectrolytes. The electrophoretic mobility of these oligomers increases strongly with N, which is attributed to a hydrodynamic coupling between monomers. Then the mobility is maximum for an N of about 10, for which the PSS oligomers are still in a rod-like conformation. Afterwards, as N increases and the PSSs are larger than the Debye length, the electrophoretic mobility decreases slowly until it reaches a constant value corresponding to the free-draining behavior. Next, the electrophoretic behavior of long PSS (N about 1,200) differing in their sulfonation rates was investigated. The effective charge rates were determined independently by conductimetric measurements and the mobilities were modeled as a function of the sulfonation rate. The PSS behavior observed was compared to the one previously reported for classical polyelectrolytes having hydrophilic backbones, such as copolymers of poly(acryamide-coacrylic acid). A specific behavior has been pointed out for these partially sulfonated PSSs, which is attributed to the hydrophobicity of their backbone. Finally, it is shown that separations of PSSs of different sulfonation rates can be obtained with electrolytes containing an anionic surfactant or methanol.  相似文献   

2.
Cottet H  Gareil P 《Electrophoresis》2002,23(16):2788-2793
The influence on the electrophoretic behavior of polystyrenesulfonates of the percentage of high-molecular-mass chains in an entangled poly(ethylene oxide) solution having a bimodal molecular mass distribution has been investigated and compared with the results obtained for similar solutions of unimodal molecular mass distribution. The comparisons between the different separating polymer solutions were made at a constant total mass concentration, so as to keep constant the mesh size and to highlight the sole effect of the network dynamics. The use of binary polymer mixtures of two different molecular masses but of same nature can be a convenient alternative to modulate the dynamics of the network and the viscosity of the separating medium. A 20-30% content of high-molecular-mass chains in an entangled poly(ethylene oxide) solution having a binary molecular mass distribution appears to be a good compromise for a moderate viscosity and a good separation selectivity in comparison with a solution containing only chains of high molecular mass at the same concentration.  相似文献   

3.
A theoretical model to explain the observed mobility of inorganic anions in capillary electrochromatography (CEC) using ion-exchange (IE) stationary phases has been derived. The model divides contributions to the observed mobility of an analyte ion into capillary electrophoretic (CE) and IE components. The CE component includes the influence of varying the ionic strength of the background electrolyte on the electrophoretic mobility of the analyte, while the IE component accounts for the variation in retention of the analyte ion caused by changing the composition of the background electrolyte. The model was verified using a mixture of UV-absorbing inorganic ions in electrolytes of differing eluotropic strength in both packed and open-tubular CEC systems, with excellent agreement (r2 > 0.98) for both systems. Values of constants in the model equation determined by nonlinear regression were used to estimate the relative strengths of the interactions of different analytes with the stationary phase and these were found to agree well with elution orders observed in conventional IE chromatography.  相似文献   

4.
Atomistic molecular modeling has been used to study the sulfonic acid anion of poly(ethylene oxide) (PEO sulfonic acid anion) in vacuum and a polymer electrolyte system consisting of the PEO sulfonic acid anion in water. The vibrational spectra of the molecules were simulated by the local mode method and found to be in good agreement with the experimental IR and Raman spectra. The structure of PEO sulfonic acid anion was studied in vacuum and water and compared to the structure of an isolated PEO sulfonic acid in vacuum. The simulated value for the root mean square end-to-end distance for the PEO sulfonic acid anion was 22 Å in vacuum and 12 Å in water. The root mean square radius of gyration of the PEO sulfonic acid anion was 8.4 Å in vacuum and 5.6 Å in water. The PEO sulfonic acid anion was randomly coiled in water and in an extended shape in vacuum.  相似文献   

5.
Xu F  Jabasini M  Baba Y 《Electrophoresis》2005,26(15):3013-3020
We describe a quick and systematic optimization of molecular weights (MWs) and concentrations of a series of mixed poly(ethylene oxide) (PEO) matrices for separating specific double-stranded DNA fragments on polymethylmethacrylate-based microchips by using an orthogonal design (ORD) approach. The mixed matrices are composed of PEOs in four MW ranges (M(w) 8 x 10(6), 1 x 10(6), 4 x 10(5), and 1 x 10(5)) with varying concentration ratios. In the mixed solutions, PEO with an intermediate MW of 4 x 10(5) is found to be a dominant factor for separating small DNA fragment pairs (e.g., 82 and 88 bp), while PEO with a high MW of 8 x 10(6) plays an important role in separating intermediate and large fragments (e.g., 271 and 281 bp, 506 and 517 bp, 7 and 10 kbp). High-concentration PEO mixtures give better resolution for short fragments, while dilute PEO mixtures show better resolution for long fragments. The optimized matrices are suitable for high-resolution separation of multiplex polymerase chain reaction-amplified products and restriction digest fragments ranging in size from 20 bp to 40 kbp within 4 min at a constant field strength of 177 V/cm. The experimental results indicate the robustness and speediness of the ORD to screen the contribution of PEO MWs and to tune optimally the PEO concentration ratio of different MWs with reference to the performance of specific DNA fragments separated.  相似文献   

6.
A stochastic model is presented to calculate the number of chain segments entangled about a unit plane when the segment length is a stochastic variable. This crossing density to which the brittle fracture energy and the critical strength of entangled polymers scale is a function of the number of moles of entanglement network strands per unit volume and the mesh size of the entanglement network. Experimental results of the molecular weight dependence of the fracture energy and strength validate the theoretical predictions.  相似文献   

7.
针对被称为"第一代聚羧酸高性能减水剂"(以下简称为MPEG-type PCE)的甲基丙烯酸(MAA)/烯酸甲酯(MAA-MPEG)梳状共聚物分子,从高分子物理基础理论出发,构建等效自由连接链模型,结合前人的理论结果和实验数据,得到了MPEG-type PCE分子的回转半径、流体力学半径及其相应的支化参数的数学表达式.在此基础上,报道了以下三方面的工作:首先,将计算结果与文献中的实验结果进行比较,检验模型的合理性;其次,利用所建立的数学模型考察主链分子量、侧链分子量和侧链接枝密度对PCE分子的回转半径和流体力学半径的影响;最后,结合近年来发展的体积排除色谱分离理论,对PCE分子的真实分子量与其常规体积排除色谱"表观分子量"(又被称为GPC分子量)两者之间的差异进行了分析.本文所提出的计算模型和数学表达式没有不确定的指前因子,可用来估算MPEG-type PCE分子在稀水溶液中的尺寸以及根据其GPC分子量估算真实分子量.  相似文献   

8.
A new kind of binary hydrogels composed of poly(dimethylaminoethylmethacrylate) (PDMAEMA) and poly(ethylene oxide) (PEO) with varying weight average molecular weights ((M)w = 5 × 104, 1 × 105 and 2.5 × 106) were prepared by y-irradiation technology. The properties of PDMAEMA/PEO hydrogels obtained were evaluated in terms of gel fraction, gel strength, thermal characterization and swelling behavior. The gel strength and swelling degree of the hydrogels could be improved obviously after adding PEO into the PDMAEMA system, while the degree of improvement decreased with increasing (M)w of PEO. The temperature sensitivity of PDMAEMA/PEO was retained only in the sample with PEO of (M)w = 5 × 104, and the pH sensitivity was retained in samples with PEO of (M)w = 5 × 104 and 1 × 105. When DMAEMA/PEO mixtures containing PEO of (M)w = 5 × 104 were irradiated, the main reaction could be the cross-linking of DMAEMA, and the linear PEO molecular chains could penetrate into the cross-linked network of PDMAEMA. With increasing Mw of PEO, some side reactions were induced, such as grafting of DMAEMA onto PEO molecules, the scission or cross-linking of PEO.  相似文献   

9.
Thermal stability of poly(vinyl chloride)/poly(ethylene oxide) (PVC/PEO) blends has been investigated by thermogravimetric analysis (TGA) in dynamic and isothermal heating regime. PVC/PEO blends were prepared by hot-melt extrusion (HME). According to TG analysis, PEO decomposes in one stage, while PVC and PVC/PEO blends in two degradation stages. In order to evaluate the effect of PEO content on the thermal stability of PVC/PEO blends, different criteria were used. It was found that thermal stability of PVC/PEO blends depends on the blend composition. The interactions of blends components with their degradation products were confirmed. By using multiple heating rate kinetics the activation energies of the PVC/PEO blends thermal degradation were calculated by isoconversional integral Flynn–Wall–Ozawa and differential Friedman method. According to dependence of activation energy on degree of conversion the complexity of degradation processes was determined.  相似文献   

10.
Ion conductivity of poly(ethylene oxide) (PEO)-based polyurethane networks containing alkali metal salts has been investigated. Consequently, it has been revealed that the conductivity is dependent on the following parameters: lattice energy of the alkali metal salt, concentration of alkali metal salt, and the cross-linking density of the network polymer (which is a function both of the amount of cross-linking agent and the molecular weight of PEO). Under optimal conditions, the conductivity at ambient temperature corresponded to 2.51 × 10?5 Scm?1, which is greater than that of a typical alkali metal-PEO system by a factor of about 102 to 103. Moreover, from the standpoint of the application to electrochromic displays (ECD), tensile bond strength between the polymer electrolytes and tungsten trioxide (WO3), which is the most promising electrochromic material, has been evaluated. The bonding strength of the bond of WO3 with the present electrolyte has been found to be much larger than that of the alkali metal-PEO system.  相似文献   

11.
采用凝胶色谱与多角激光光散射联用的方法,测定了一系列不同分子量的聚乙二醇(PEG)和聚氧化乙烯(PEO)在色谱柱中的扩展效应.扩展因子随PEG/PEO分子量的增加而增大,经扩展效应改正后得到了样品的准确分子量和分子量分布.同时建立了PEO的Z均回转半径Rgz与重均分子量Mw之间的单分散标度关系:Rgz=0.0272 Mw0.56,结果表明,长链PEO在水溶液中由于排除体积效应采取溶胀的无规线团构象.  相似文献   

12.
A class II valence force field covering a broad range of organic molecules has been derived employing ab initio quantum mechanical "observables." The procedure includes selecting representative molecules and molecular structures, and systematically sampling their energy surfaces as described by energies and energy first and second derivatives with respect to molecular deformations. In this article the procedure for fitting the force field parameters to these energies and energy derivatives is briefly reviewed. The application of the methodology to the derivation of a class II quantum mechanical force field (QMFF) for 32 organic functional groups is then described. A training set of 400 molecules spanning the 32 functional groups was used to parameterize the force field. The molecular families comprising the functional groups and, within each family, the torsional angles used to sample different conformers, are described. The number of stationary points (equilibria and transition states) for these molecules is given for each functional group. This set contains 1324 stationary structures, with 718 minimum energy structures and 606 transition states. The quality of the fit to the quantum data is gauged based on the deviations between the ab initio and force field energies and energy derivatives. The accuracy with which the QMFF reproduces the ab initio molecular bond lengths, bond angles, torsional angles, vibrational frequencies, and conformational energies is then given for each functional group. Consistently good accuracy is found for these computed properties for the various types of molecules. This demonstrates that the methodology is broadly applicable for the derivation of force field parameters across widely differing types of molecular structures. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1782-1800, 2001  相似文献   

13.
Mesoporous molecular sieve LiAlSBA was prepared via an ion exchange process with mesoporous AlSBA directly, which has a regular 2D hexagonal structure with pore size about 7 nm. It was added into poly(ethylene oxide) (PEO) solid electrolyte as filler. The characteristics of the composite polymer electrolyte were determined by XRD, DSC, TGA, FTIR, PLM and electrochemical methods. Compared with bare PEO electrolyte, the adding of dispersed LiAlSBA powder improved the ionic conductivity of PEO polymer electrolyte more than three orders. The reason for it is that mesoporous LiAlSBA powder acts as crystal cores in PEO composite electrolyte and fines the crystallites, decreases the crystallinity, which provides much more continuous amorphous domain for Li+ moving easily in PEO electrolyte. Besides, lithium ions of the mesoporous molecular sieves can hop from one site to another along the surface of the mesoporous channels, this mechanism is absent in the case of common nano-ceramic fillers in PEO electrolyte.  相似文献   

14.
To investigate the structure and dynamics of water in mixed solutions including laponite clay particles and poly(ethylene oxide) (PEO), we measured the Raman spectra of the mixed solutions in the temperature range 283-313 K. The results show that the vibrational energies of the O-H stretching modes in the mixed solutions depend on the water content and temperature. The energy shifts of the O-H stretching modes are attributed to changes in the water structure. By applying a structural model of bulk water to the spectra in the O-H stretching region, the local structures of water in the solutions were analyzed. The result shows that the formation probability of hydrogen bonds in the solutions decreases as the water content decreases. Laponite and PEO have effects to disrupt the network structure of hydrogen bonds between water molecules. Further, it was found that laponite and PEO cause increase in the strength of hydrogen bonds of surrounding water,although the strength of the hydrogen bonds increases with the order water-laponite < water-water < water-PEO. It is concluded that water in laponite-PEO mixed solutions has a less-networked structure with strong hydrogen bonds compared with bulk water.  相似文献   

15.
NMR spectroscopy was used to investigate the association of four chiral molecules with the molecular micelle poly(sodium N-undecanoyl-l-leucylvalinate) (poly(SULV)). Adding poly(SULV) to the background electrolyte in electrokinetic chromatography (EKC) allows enantiomeric resolution to be achieved because enantiomers interact differentially with the chiral centers on the micelle headgroups as they both move in the electric field. Pulsed field gradient diffusion experiments were used to measure molecular micelle association constants for enantiomers of each analyte. These association constants were consistent with EKC elution order for the compounds 1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (BNP), 1,1'-bi-2-naphthol (BOH), and Troger's base. In addition, nuclear Overhauser enhancement spectroscopy, nuclear Overhauser effect difference, and intermolecular cross relaxation diffusion experiments were used to generate binding interaction maps for each chiral analyte. These maps showed that BNP and BOH inserted into the surfactant headgroup's major chiral groove and interacted predominately with the leucine chiral center. (+)-Troger's base was also found to insert into the major chiral groove. However, this compound instead interacted with the valine chiral atom. In diffusion experiments with long diffusion times, the linearized diffusion plots for each analyte-molecular micelle mixture showed curvature characteristic of intermolecular cross relaxation. The magnitude of this effect scaled linearly with the analytes' free energies of binding.  相似文献   

16.
UV-absorbing neutral substances are commonly used as markers of mean electroosmotic flow in capillary electrophoresis for their zero electrophoretic mobility in an electric field. However, some of these markers can interact with background electrolyte components and migrate at a different velocity than the electroosmotic flow. Thus, we tested 11 markers primarily varying in their degree of methylation and type of central atom in combination with five background electrolyte cations differing in their ionic radii and surface charge density, measuring the relative electrophoretic mobility using thiourea as a reference marker. Our results from this set of experiments showed some general trends in the mobilization of the markers based on the effects of marker structure and type of background electrolyte cation on the relative electrophoretic mobility. As an example, the effects of an inadequate choice of marker on analyte identification were illustrated in the electrophoretic separation of glucosinolates. Therefore, our findings may help electrophoretists appropriately select electroosmotic flow markers for various electrophoretic systems.  相似文献   

17.
Solid polymer electrolytes with excellent ionic conductivity (above 10(-4) S cm(-1)), which result in high optical modulation for solid electrochromic (EC) devices are presented. The combination of a polar host matrix poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) and a solid plasticized of a low molecular weight poly(ethylene oxide) (PEO) (M(w)≤ 20,000) blended polymer electrolyte serves to enhance both the dissolution of lithium salt and the ionic transport. Calorimetric measurement shows a reduced crystallization due to a better intermixing of the polymers with small molecular weight PEO. Vibrational spectroscopy identifies the presence of free ions and ion pairs in the electrolytes with PEO of M(w)≤ 8000. The ionic dissolution is improved using PEO as a plasticizer when compared to liquid propylene carbonate, evidently shown in the transference number analysis. Ionic transport follows the Arrhenius equation with a low activation energy (0.16-0.2 eV), leading to high ionic conductivities. Solid electrochromic devices fabricated with the blended P(VDF-TrFE)/PEO electrolytes and polyaniline show good spectroelectrochemical performance in the visible (300-800 nm) and near-infrared (0.9-2.4 μm) regions with a modulation up to 60% and fast switching speed of below 20 seconds. The successful introduction of the solid polymer electrolytes with its best harnessed qualities helps to expedite the application of various electrochemical devices.  相似文献   

18.
The effect of homogeneous electric fields on the adsorption energies of atomic and molecular oxygen and the dissociation activation energy of molecular oxygen on Pt(111) were studied by density functional theory (DFT). Positive electric fields, corresponding to positively charged surfaces, reduce the adsorption energies of the oxygen species on Pt(111), whereas negative fields increase the adsorption energies. The magnitude of the energy change for a given field is primarily determined by the static surface dipole moment induced by adsorption. On 10-atom Pt(111) clusters, the adsorption energy of atomic oxygen decreased by ca. 0.25 eV in the presence of a 0.51 V/A (0.01 au) electric field. This energy change, however, is heavily dependent on the number of atoms in the Pt(111) cluster, as the static dipole moment decreases with cluster size. Similar calculations with periodic slab models revealed a change in energy smaller by roughly an order of magnitude relative to the 10-atom cluster results. Calculations with adsorbed molecular oxygen and its transition state for dissociation showed similar behavior. Additionally, substrate relaxation in periodic slab models lowers the static dipole moment and, therefore, the effect of electric field on binding energy. The results presented in this paper indicate that the electrostatic effect of electric fields at fuel cell cathodes may be sufficiently large to influence the oxygen reduction reaction kinetics by increasing the activation energy for dissociation.  相似文献   

19.
Nonaqueous capillary electrophoretic separations were performed under high electric field strengths (up to 2000 Vcm(-1)) in ethanolic background electrolyte solution and the contributions of different band broadening effects to plate height were evaluated. Under optimum conditions, increasing the field strength will provide faster separations and increased separation efficiency. Decrease in the separation efficiency at high field strengths was, however, observed in a previous study and now in the present paper an attempt is made to quantify various band broadening effects by applying a plate height model, which included the contributions of the injection plug length, diffusion, electromigration dispersion, Joule heating, analyte adsorption to the capillary wall, and detector slit aperture length. Of special interest were the contributions of Joule heating and analyte adsorption to the capillary wall. Poly(glycidylmethacrylate-co-N-vinylpyrrolidone)-coated fused-silica capillaries were used with internal diameters (ID) ranging from 30 to 75 microm. The separation efficiencies obtained experimentally were compared with the theoretically calculated efficiencies and fairly good agreement was observed for the 30 microm ID capillary. Relatively large deviation from the predictions of the model was found for the other capillary diameters especially at higher field strengths. The possible reasons for the deviation were discussed.  相似文献   

20.
Within the framework of a proposed two-step mechanism for hydrate inhibition, the energy of binding of four inhibitor molecules (PEO, PVP, PVCap, and VIMA) to a hydrate surface is estimated with molecular dynamic simulations. One key feature of this proposed mechanism is that the binding of an inhibitor molecule to the surface of an ensuing hydrate crystal disrupts growth and therein crystallization. It is found through the molecular dynamic simulations that inhibitor molecules that experimentally exhibit better inhibition strength also have higher free energies of binding, an indirect confirmation of our proposed mechanism. Inhibitors increasing in effectiveness, PEO < PVP < PVCap < VIMA, have increasingly negative (exothermic) binding energies of -0.2 < -20.6 < -37.5 < -45.8 kcal/mol and binding free energies of increasing favorability (+0.4 approximately = +0.5 < -9.4 < -15.1 kcal/mol). Furthermore, the effect of an inhibitor molecule on the local liquid water structure under hydrate-forming conditions was examined and correlated to the experimental effectiveness of the inhibitors. Two molecular characteristics that lead to strongly binding inhibitors were found: (1) a charge distribution on the edge of the inhibitor that mimics the charge separation in the water molecules on the surface of the hydrate and (2) the congruence of the size of the inhibitor with respect to the available space at the hydrate-surface binding site. Equipped with this molecular-level understanding of the process of hydrate inhibition via low-dosage kinetic hydrate inhibitors we can design new, more effective inhibitor molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号