首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface Acoustic Wave (SAW) pulses were excited in C60 films deposited on quartz and silicon substrates using pulses from excimer lasers with wavelengths of 248 nm and 308 nm for excitation. An optical beam-deflection technique and polymer electret transducers were utilized to detect the propagation of the SAW pulse with high spatial and temporal resolution, allowing an accuracy of better than 0.1% for SAW velocity measurements. With this technique the frequency dependence of the SAW velocity was determined for a number of fullerite films and density, as well as elastic bulk properties of the films were derived by a theoretical analysis of the dispersion effect.  相似文献   

2.
The mechanisms of the ejection of aluminum and copper microparticles from the free surfaces of these metals have been studied under conditions of the escape of a moderate-intensity shock wave from a sample. The free surfaces of samples contained 0.7–0.9 mm deep artificial wells and protrusions simulating (on a greater scale of 10: 1) the natural surface roughness retained upon mechanical processing. The pressure in a shock-wave pulse at the base of a protrusion was controlled within P = 5–20 GPa (i.e., below the melting region), and the variable duration of pressure pulses was 0.02, 0.2, and 1 μs. Analysis of the free surfaces of postloaded samples showed that, for certain loading and roughness parameters, the ejection of metal from vertices of protruding ridges or pyramids (as a result of the longitudinal fracture) was about ten times greater than the amount of metal ejected in the form of cumulative jets from wells. The amount of ejected metal and the size distribution of metal microparticles were quantitatively characterized using “soft collecting targets” and by measuring mass losses of samples upon fracture.  相似文献   

3.
Lomonosov AM  Hess P 《Ultrasonics》2008,48(6-7):482-487
A laser-based technique for the contact-free generation and detection of strongly nonlinear surface acoustic wave (SAW) pulses with amplitudes limited by the materials strength has been developed. The effects of nonlinear propagation of short elastic surface pulses with finite strength in isotropic solids, such as fused quartz, anisotropic solids, such as silicon, and dispersive media were investigated. Solitary surface wave propagation was observed in layered structures for normal and anomalous dispersion. In addition, a SAW-based method for evaluating the critical fracture stress of anisotropic brittle solids, such as single crystal silicon, is introduced.  相似文献   

4.
Measurement of the critical fracture strength of single-crystal silicon was carried out by contact-free laser-based excitation and detection of nonlinear surface acoustic wave (SAW) pulses. The three crystallographic geometries Si(112)111[over ], Si(112)1[over ]1[over ]1, and Si(110)11[over ]1 were examined. A comparison of the optically detected SAW transients and numerically calculated stress-strain fields allowed an estimate of the intrinsic mechanical strength without using an artificial precrack. Depending on the geometry, the critical strength varied between 5 and 7 GPa.  相似文献   

5.
We have investigated the mechanical and acoustic properties of human teeth using the laser generation of surface acoustic wave (SAW) technique. The materials investigated included normal and decayed teeth, which have similar grain sizes and different thicknesses. The tissue responds to the laser-induced stress by thermoelastic expansion. The informative features of this method allow one to determine sample thermal, optical, and acoustical properties that depend on the peculiarities of the sample compositional structure. An interferometric detection experimental scheme is applied for detection generated SAW pulses. The surface displacement curves shape of normal and decayed human teeth are shown. The dispersion curves for SAW pulses were determined by Fourier analysis. The result is an almost linear dependence of SAW velocity on frequency for a normal tooth, the magnitude of the thermoelastic expansion of the normal tooth reaches its peak at 0.344 μs, a SAW phase velocity of 2500 ms?1 between 0.0008 and 5 MHz was determined. For abnormal teeth, the magnitude of thermoelastic expansion of the normal tooth reaches its peak at 1.3 μs, the measured velocity was 3225 ms?1. Due to the inhomogeneity of abnormal teeth perpendicular to the propagation direction, strong differences in their dispersion curves were obtained. The detection of acoustic waves is the basis of photoacoustic methods, which can be used for diagnostic purposes.  相似文献   

6.
This paper presents an original passive wireless rotation speed measurement method based on surface acoustic wave (SAW) technology. A theoretical analysis was conducted on the principle of SAW rotation speed measurement and a numerical analysis on the SAW response energy pulses with different rotation angles and resonance frequencies was performed. Numerical calculation results showed that when the distance and the effective length of the antenna connected to SAWR vary with the rotation angle, the energy of acquired SAW response varies periodically. The rotation speed was estimated by searching the crossing points of the SAW response energy pulses and its mean value line. The SAW rotation speed measurement system was set up and the high performance SAW resonators were fabricated on a quartz substrate. The proposed measurement system was tested with a maximum error of 0.6 rpm, indicating that the system is capable of measuring rotation speeds from 10 to 100 rpm. Experimental results verified the validity and feasibility of presented rotation speed measurement method.  相似文献   

7.
In this paper, we propose a novel optimal sensitivity design scheme for the yarn tension sensor using surface acoustic wave (SAW) device. In order to obtain the best sensitivity, the regression model between the size of the SAW yarn tension sensor substrate and the sensitivity of the SAW yarn tension sensor was established using the least square method. The model was validated too. Through analyzing the correspondence between the regression function monotonicity and its partial derivative sign, the effect of the SAW yarn tension sensor substrate size on the sensitivity of the SAW yarn tension sensor was investigated. Based on the regression model, a linear programming model was established to gain the optimal sensitivity of the SAW yarn tension sensor. The linear programming result shows that the maximum sensitivity will be achieved when the SAW yarn tension sensor substrate length is equal to 15 mm and its width is equal to 3 mm within a fixed interval of the substrate size. An experiment of SAW yarn tension sensor about 15 mm long and 3 mm wide was presented. Experimental results show that the maximum sensitivity 1982.39 Hz/g was accomplished, which confirms that the optimal sensitivity design scheme is useful and effective.  相似文献   

8.
During nonlinear evolution of surface acoustic waves (SAWs) stress increases with propagation, and may cause fracture of brittle materials. This effect was used to evaluate the strength of crystalline silicon with respect to impulsive load in the nanosecond time scale without using seed cracks. Short SAW pulses propagating in the [11(macro)2] direction on the Si(111) plane induce fracture at significantly lower SAW amplitudes than the mirror symmetric wave propagating in the [112(macro)] direction. This effect is explained by the differences in elastic nonlinearity of the two propagation directions.  相似文献   

9.
The influence of melting on the excitation of Surface Acoustic Wave (SAW) pulses in silicon is studied both theoretically and experimentally. The developed theory of Rayleigh-type SAW laser-induced thermoelastic excitation in a structure composed of a liquid layer on a solid substrate predicts that the SAW is predominantly generated in the solid phase due to the absence of shear rigidity in a liquid. The characteristic changes in the SAW pulse shape as well as the saturation and even the decrease of the SAW pulse amplitude observed above the melting threshold are explained theoretically to be a result of the decrease of the heat flux into the solid phase as well as due to the decrease of the volume of the solid phase caused by melting. Although the heat flux into the solid phase is decreased both as a consequence of the reflectivity increase and the additional energy losses (latent heat of melting) at the phase transition, it is demonstrated that the influence of reflectivity changes on the SAW pulse is negligible in comparison with the effect of melt-front motion. For laser pulses of 7 ns duration at 355 nm, the threshold value of laser fluence for meltingF m=0.23±0.04 J/cm2 and for the ablationF a=1.3±0.2 J/cm2 were determined experimentally as the points of characteristic changes in the observed SAW pulses.  相似文献   

10.
Poly- and monocrystalline samples of aluminium implanted with 111In to a dose of about 1013 at/cm2 were irradiated at a temperature of 80 K with a Q-switched pulsed ruby laser. The energy density of the 25 ns pulses was in the range of 1–5 J/cm2. Perturbed angular correlation measurements revealed the formation of several In-vacancy clusters, some of which give rise to electric field gradient tensors oriented along low-index crystallographic directions. This clearly shows that laser irradiation acts as a fast quench and that the monocrystalline structure is not destroyed, not even by the highest laser pulse intensity.  相似文献   

11.
《Physics letters. A》2001,280(3):157-161
The nonlinear propagation of very high-amplitude surface acoustic wave (SAW) pulses in polycrystalline aluminum and copper was studied. A nonlinear compression and an increase of the SAW pulse amplitude have been observed. SAW pulses were numerically simulated with a nonlinear evolution equation including local and nonlocal nonlinear terms.  相似文献   

12.
5083铝合金光纤激光-TIG复合焊接工艺研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用IPG YLS-6000光纤激光器和Fronius MagicWave3000job数字化焊机,对4mm厚5083H116铝合金进行了复合焊接试验。研究了电源特性、电流大小和热源间距等工艺参数对光纤激光-钨极惰性气体保护焊(TIG)复合焊接焊缝成形的影响规律,并分析了焊接接头的缺陷、显微硬度及力学性能。结果表明,光纤激光-TIG复合焊接5083铝合金,能够明显改善焊缝成形,提高焊接过程稳定性,特别是与变极性TIG电弧复合效果更为显著;光纤激光与变极性TIG电弧复合焊接,采用激光在前的方式,电弧电流150A,且热源间距不大于4mm,可以得到具有明亮金属光泽和均匀鱼鳞纹的焊缝,焊缝无气孔和裂纹缺陷,其表面有少量的下凹;复合焊接接头抗拉强度为318MPa,达到母材强度的93%,延伸率为7.6%,高于单光纤激光焊接,断口分析为韧性断裂。  相似文献   

13.
A previously described laser ultrasonic technique known as spatially resolved acoustic spectroscopy (SRAS) can be used to image surface microstructure, using the local surface acoustic wave (SAW) velocity as a contrast mechanism. It is shown here that measuring the SAW velocity in multiple directions can be used to determine the crystallographic orientation of grains. The orientations are determined by fitting experimentally measured velocities to theoretical velocities. Using this technique the orientations of 12 nickel and 3 aluminum single crystal samples have been measured, and these are compared with x-ray Laue backreflection (LBR) measurements with good agreement. The root mean square difference between SRAS and LBR measurements in terms of an R-value is less than 4.1°. The influence of systematic errors in the SAW velocity determination due to instrument miscalibration, which affects the accurate determination of the planes, is discussed. SRAS has great potential for complementary measurements or even for replacing established orientation determination and imaging techniques.  相似文献   

14.
钛合金凭借其强度高、耐蚀性好、耐热性高等特点已经被广泛应用于航天、海洋、生物医药等诸多领域,其中Ti-6Al-4V(TC4)合金的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,已成为钛合金工业中的王牌合金。钛合金在激光焊接时,加入表面活性剂可以增加焊缝熔深、提高焊接效率、改善焊缝微观组织的不均匀性,但是可能会改变熔合区和焊缝区中元素含量及其分布状态,从而可能会对材料的性能产生一定的影响。运用LIBS分析技术对TC4钛合金焊接试样表面进行面扫描同步获得多元素成分信息,同时结合原位统计分布分析方法(OPA),实现了对钛合金母材、熔合区、焊缝成分及其分布状态的快速表征,为活性剂的选择和焊接后钛合金的材料性能提供一种新的评价手段。选取了两个使用不同活性剂进行焊接的TC4钛合金薄板试样,选取焊缝纵切面方向作为分析面,采用320目的氧化铝砂纸进行表面处理,利用LIBSOPA系统进行成分分布统计表征。首先,对激发光斑和剥蚀条件进行条件优化,最终选择200 μm的激发光斑、10个预剥蚀脉冲10个剥蚀脉冲进行实验,并建立了钛合金中C,Al,V,Fe,Si和Ti六个元素的校准曲线(其中Si元素主要来自活性剂);然后对钛合金焊接样品进行了区域扫描,并对元素含量和分布状态进行了统计表征。同时,在钛合金焊接样品的不同部位进行分区取样,采用高频红外法分析C元素含量,并与LIBSOPA结果进行比对,两种测试方法结果吻合。元素Al,V,Fe,Si和Ti分布结果与微束X荧光光谱法对应性较好。运用LIBSOPA 技术实现了对钛合金母材、熔合区、焊缝中多元素的成分分布表征,为快速判定钛合金焊缝中成分及分布状态提供了全新的评价表征手段。  相似文献   

15.
Electron spin-echo experiments generally require microwave power levels of hundreds of watts to produce the 5–10 G of RF field to generate 90° and 180° pulses in 10 ns. A low-power (i.e., less than I W) EPR spectrometer using a loop-gap resonator can generate the full range of time-domain experiments on samples with submicrosecond recovery times; 90° pulses are generated in 40 ns, and relaxation times as short as 22 ns are measured. Appropriate time-domain experiments were performed to independently measure the spinspin relaxation time, phase memory time, and spin-lattice relaxation time; the results were compared with CW saturation. It was found that the spin-spin and spin-lattice relaxation rates do differ by about 5%. The entire CW signal of PADS is reconstructed from a pulse experiment at a single field position. Small differences in linewidths among the three lines were seen in accordance with theory.  相似文献   

16.
V. Bucur  F. Rocaboy 《Ultrasonics》1988,26(6):344-347
Overall elastic properties of wood can be studied by ultrasonic methods. Orthotropic symmetry is assumed (nine constants). This article describes two methods developed for the determination of three off-diagonal terms of the stiffness matrix. The first method deals with bulk waves (BAW), and the second with surface wave (SAW) measurements. The BAW method requires repeated off-axis measurements and an optimization criterion for selecting the Cij-terms. The SAW method gives the value of the Cij-term corresponding to a specific plane of symmetry, from only one on-axis measurement. The six diagonal terms of the stiffness matrix can be obtained easily from on-axis bulk wave measurements. From the nine terms of the matrix, the compliance terms (Sij) and corresponding technical terms are calculated. Technical constants determined from ultrasonic measurements are in agreement with those obtained by classical statistical methods. The experiments were performed on beech and spruce. The SAW technique is expected to be of more interest for further investigations of wood mechanical properties.  相似文献   

17.
Strong anisotropic effects in the propagation of surface acoustic waves (SAWs) from a point-like source are studied experimentally and theoretically. Nanosecond SAW pulses are generated by focused laser pulses and detected with a cw probe laser beam at a large distance from the source compared to the SAW wavelength, which allows us to resolve fine intricate features in SAW wavefronts. In our theoretical model, we represent the laser excitation by a localized impulsive force acting on the sample surface and calculate the far-field surface response of an elastically anisotropic solid to such a force. The model simulates the measured SAW waveforms very well and accounts for all experimentally observed features. Using the data obtained for the (111) and (001) surfaces of GaAs, we describe a variety of effects encountered in the SAW propagation from a point source in crystals. The most interesting phenomenon is the existence of cuspidal structures in SAW wavefronts resulting in multiple SAW arrivals for certain ranges of the observation angle. Cuspidal edges correspond to the phonon focusing directions yielding sharp peaks in the SAW amplitude. A finite SAW wavelength results in internal diffraction whereby the SAW wavefront spreads beyond the group velocity cusps. Degeneration of a SAW into a transverse bulk wave is another strong effect influencing the anisotropy of the SAW amplitude and making whole sections of the SAW wavefront including some phonon focusing directions unobservable in the experiment. The propagation of a leaky SAW mode (pseudo-SAW) is affected by a specific additional effect i.e. anisotropic attenuation. We also demonstrate that many of the discussed features are reproduced in powder patterns, a simple technique developed by us earlier for visualization of SAW amplitude anisotropy.Received: 17 June 2003, Published online: 15 October 2003PACS: 43.35.+d Ultrasonics, quantum acoustics, and physical effects of sound - 68.35.Gy Mechanical properties; surface strains - 62.65.+k Acoustical properties of solidsA.M. Lomonosov: On leave from the General Physics Institute, 117942 Moscow, Russia  相似文献   

18.
This study is concerned with the effects of laser and arc arrangement on weld integrity for the hybrid laser arc welding processes. Experiments were conducted for a high-strength steel using a 4 kW Nd: YAG laser and a metal active gas (MAG) welding facility under two configurations of arc–laser hybrid welding (ALHW) and laser–arc hybrid welding (LAHW). Metallographic analysis and mechanical testing were performed to evaluate the weld integrity in terms of weld bead geometry, microstructure and mechanical properties. The morphology of the weld bead cross-section was studied and the typical macrostructure of the weld beads appeared to be cone-shaped and cocktail cup-shaped under ALHW and LAHW configurations, respectively. The weld integrity attributes of microstructure, phase constituents and microhardness were analyzed for different weld regions. The tensile and impact tests were performed and fracture surface morphology was analyzed by scanning electron microscope. The study showed that ALHW produced joints with a better weld shape and a more uniform microstructure of lath martensite, while LAHW weld had a heterogeneous structure of lath martensite and austenite.  相似文献   

19.
The effect of the optical anisotropy of scattering media on the polarization state of scattered light is studied. The study is performed using a simple polarization method based on the comparison of the spectral composition of the co-and cross-polarized components of transmitted light measured for samples differently oriented with respect to the plane of polarization of probe linearly polarized light. The experimental results obtained are interpreted theoretically in terms of ordinary methods used in optics of birefringent media. Using rat skin as an example, it is shown that surface tissues can be characterized by a high degree of orientational order of the local optical axis of a medium within large areas (with a size of 5 mm or more), which manifests itself in macroscopic optical measurements. In such measurements in the spectral range 550–700 nm, whole rat skin behaves as a partially depolarized phase plate with a difference between the principal refractive indices Δn ≈ 0.00023.  相似文献   

20.
MOCVD法生长SAWF用ZnO/Diamond/Si多层结构   总被引:4,自引:2,他引:4  
使用等离子体辅助MOCVD系统在金刚石,硅衬底上成功地制备了氧化锌多层薄膜材料,通过两步生长法对薄膜质量进行了优化。XRD测试显示优化后的样品具有c轴的择优取向生长,PL谱测试表明样品经优化后不仅深能级发射峰消失,同时紫外发射峰增强。对优化后的样品的表面测试显示出较低的表面粗糙度。比较氧化锌多层薄膜结构的声表面波频散曲线,ZnO薄膜声表面滤波器受膜厚和衬底材料的影响较大。当ZnO薄膜较薄时,在它上面的传播速度将与衬底上的传播速度接近,与其他衬底上生长的薄膜相比,以金刚石这种快声速材料为衬底的ZnO多层薄膜结构,声表面波滤波器的中心频率将提高1倍左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号