首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study considers algebraic turbulence modeling in adiabatic gas–liquid annular two-phase flow. After reviewing the existing literature, two new algebraic turbulence models are proposed for both the liquid film and the droplet laden gas core of annular two-phase flow. Both turbulence models are calibrated with experimental data taken from the open literature and their performance critically assessed. Although the proposed turbulence models reproduce the key parameters of annular flow well (average liquid film thickness and pressure gradient) and the predicted velocity profiles for the core flow compare favorably with available core flow velocity measurements, a more accurate experimental database is required to further improve the models accuracy and range of applicability.  相似文献   

2.
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air–water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam–water annular flow conditions. In each experiment, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using the liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant [Sawant, P.H., Ishii, M., Mori, M., 2008. Droplet entrainment correlation in vertical upward co-current annular two-phase flow. Nucl. Eng. Des. 238 (6), 1342–1352] for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible.Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air–water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air–water, helium–water and air–genklene experimental data measured by Willetts [Willetts, I.P., 1987. Non-aqueous annular two-phase flow. D.Phil. Thesis, University of Oxford]. However, comparison of the correlations with the steam–water data available in literature showed significant discrepancies. It is proposed that these discrepancies might have been caused due to the inadequacy of the liquid film extraction method used to measure the entrainment fraction or due to the change in mechanism of entrainment under high liquid flow conditions.  相似文献   

3.
4.
Air-water flow has been studied in a helically coiled tube. The flow pattern transition between stratified and annular flow was examined, and a series of measurements were then taken in the annular flow regime. Local values of the liquid film thickness and liquid film flowrate around the tube periphery were obtained. The variations of these values around the periphery was similar. For most of the cases studied the liquid film flow rate was greatest on the inside of tbe bend, but in some results a subsidiary peak at the outside position was also obtained. There was little net entrained flow because of the centrifugal forces tending to deposit drops very quickly. Attempts to use correlations developed in vertical annular flow at a local position on the tube periphery were not very successful.  相似文献   

5.
A model of annular two-phase flow is used to calculate dryout on the assumption that dryout occurs when the liquid flowrate in the film on the solid surfaces becomes equal to zero. To enable the calculation to be performed, the processes of entrainment and deposition of liquid droplets must be adequately described. The rod bundle is divided, for calculational purposes, into rod centred subchannels, and the liquid flows in the liquid films and as droplets in each subchannel are calculated. The agreement between experiment and calculation for dryout power is encouraging.  相似文献   

6.
The study considers algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow, focusing in particular on momentum and heat transfer (so-called ‘convective boiling’) through the annular liquid film. In contrast with single-phase wall-bounded flow theory, shear-driven annular liquid films are assumed here to behave as fluid-bounded flows, mostly interacting with the shearing gas-entrained droplets core flow. Besides providing velocity and temperature profiles through the liquid film, the turbulence model proposed here predicts key parameters such as the average liquid film thickness, the void fraction and the convective boiling heat transfer coefficient with accuracies comparable or better than those of leading design correlations. This turbulence model is part of a unified annular flow modeling suite that includes methods to predict the entrained liquid fraction and the axial frictional pressure gradient. The underlying heat transfer database covers nine fluids (water, two hydrocarbons and six refrigerants) for vertical and horizontal tubes of 1.03-14.4 mm diameter and pressures of 0.1-7.2 MPa. Importantly, this study shows that there appears to be no macro-to-microscale transition when it comes to annular flow. Simply better physical modeling is required to span this range.  相似文献   

7.
The ability to accurately predict droplet entrainment in annular two-phase flow is required to effectively calculate the interfacial mass, momentum, and energy transfer, which characterizes nuclear reactor safety, system design, analysis, and performance. Most annular flow entrainment models in the open literature are formulated in terms of dimensionless groups, which do not directly account for interfacial instabilities. However, many researchers agree that there is a clear presence of interfacial instability phenomena having a direct impact on droplet entrainment. The present study proposes a model for droplet entrainment, based on the underlying physics of droplet entrainment from upward co-current annular film flow that is characteristic to light water reactor safety analysis. The model is developed based on a force balance and stability analysis that can be implemented into a transient three-field (continuous liquid, droplet, and vapor) two-phase heat transfer and fluid flow systems analysis computer code.  相似文献   

8.
Thin and ultra-thin shear-driven liquid films in a narrow channel are a promising candidate for the thermal management of advanced semiconductor devices in earth and space applications. Such flows experience complex, and as yet poorly understood, two-phase flow phenomena requiring significant advances in fundamental research before they could be broadly applied. This paper focuses on the results obtained in experiments with locally heated shear-driven liquid films in a flat mini-channel. A detailed map of the flow sub-regimes in a shear-driven liquid film flow of water and FC-72 have been obtained for a 2 mm channel operating at room temperature. While the water film can be smooth under certain liquid/gas flow rates, the surface of an intensively evaporating film of FC-72 is always distorted by a pattern of waves and structures. It was found, that when heated the shear-driven liquid films are less likely to rupture than gravity-driven liquid films. For shear-driven water films the critical heat flux was found of up to 10 times higher than that for a falling film, which makes shear-driven films (annular or stratified two-phase flows) more suitable for cooling applications than falling liquid films.  相似文献   

9.
The multiphase heat transfer could be enhanced by creating thin liquid film on the wall. The phase separation concept is called due to the separated flow paths of liquid and gas over the tube cross section to yield thin liquid film. Our proposed heat transfer tube consists of an annular region close to the wall and a core region, interfaced by a suspending mesh cylinder in the tube. The heat transfer tube is a multiscale system with micron scale of mesh pores, miniature scale of annular region and macroscale of tube diameter and length. Great effort has been made to link from micron scale to macroscale. The Volume of Fluid (VOF) method simulates air/water two-phase flow for vertical upflow. The three-dimensional system was successfully converted to a two-dimensional one by using three equivalent criteria for mesh pores. The non-uniform base grid generation and dynamic grid adaption method capture the bubble interface. The numerical results successfully reproduce our experimental results. The numerical findings identify the following mechanisms for the enhanced heat transfer: (a) counter-current flow exists with upward flow in the annular region and downward flow in the core region; (b) void fractions are exact zero in the core region and higher in the annular region; (c) the liquid film thicknesses are decreased to 1/6–1/3 of those in the bare tube section; (d) the gas–liquid mixture travels much faster in the annular region than in the bare tube; (e) three-levels of liquid circulation exists: meter-scale bulk liquid circulation, moderate-scale liquid circulation around a single-elongated-ring-slug-bubble, and microliquid circulation following the ring-slug-bubble tails. These liquid circulations promote the fluid mixing over the whole tube length and within the radial direction. The modulated parameters of void fractions, velocities and liquid film thicknesses in the annular region and three-levels of liquid circulation are greatly beneficial for the multiphase heat transfer enhancement.  相似文献   

10.
Prediction methods for two-phase annular flow require accurate knowledge of the velocity profile within the liquid film flowing at its perimeter as the gradients within this film influence to a large extent the overall transport processes within the entire channel. This film, however, is quite thin and variable and traditional velocimetry methods have met with only very limited success in providing velocity data. The present work describes the application of Particle Image Velocimetry (PIV) to the measurement of velocity fields in the annular liquid flow. Because the liquid is constrained to distances on the order of a millimeter or less, the technique employed here borrows strategies from micro-PIV, but micro-PIV studies do not typically encounter the challenges presented by annular flow, including very large velocity gradients, a free surface that varies in position from moment to moment, the presence of droplet impacts and the passage of waves that can be 10 times the average thickness of the base film. This technique combines the seeding and imaging typical to micro-PIV with a unique lighting and image processing approach to deal with the challenges of a continuously varying liquid film thickness and interface. Mean velocity data are presented for air–water in two-phase co-current upward flow in a rectangular duct, which are the first detailed velocity profiles obtained within the liquid film of upward vertical annular flow to the authors’ knowledge. The velocity data presented here do not distinguish between data from waves and data from the base film. The resulting velocity profiles are compared with the classical Law of the Wall turbulent boundary layer model and found to require a decreased turbulent diffusivity for the model to predict well. These results agree with hypotheses previously presented in the literature.  相似文献   

11.
Measurements of liquid base film thickness distribution have been obtained for 206 horizontal annular two-phase (air–water) flow conditions in 8.8 mm, 15.1 mm, and 26.3 mm ID tubes. It is found that the trends in base film thickness measurement do not match trends in the literature for average film thickness, which considers waves and base film together. An iterative critical friction factor model is used to model circumferentially-averaged base film thickness; an explicit, empirical correlation is also provided. Asymmetry is well-correlated by a modified Froude number based on the correlated base film thickness and the gas mass flux. The iterative model is also extended to estimate the critical film flow rate.  相似文献   

12.
This study considers the prediction of the degree of asymmetry in the circumferential distribution of the liquid film in the tube cross section of horizontal annular gas–liquid two-phase flow, endemic of the lower region of this flow regime near the stratified-wavy flow transition boundary. Focusing on disturbance waves as the predominant mechanism for transporting the liquid in the annular film from the bottom to the top of the tube to counterbalance the draining effect of gravity, a new prediction method for the degree of asymmetry in the annular liquid film is proposed that outperforms existing correlations. Flow pattern maps for horizontal gas–liquid two-phase flow of frequent use in the design of evaporators and condensers can thus be explicitly updated to account for both symmetric and asymmetric annular flows. The underlying experimental database contains 184 measured liquid film circumferential profiles, corresponding to 1276 local liquid film thickness measurements collected from 15 different literature studies for tube diameters from 8.15 mm to 95.3 mm.  相似文献   

13.
Patterns and characteristics of flow through heated tubes are investigated on the basis of concepts of two-phase dispersed annular flow patterns [1] within the framework of the three-velocity and single-temperature equilibrium model, with flowrates of the mixture not too close to critical. Conditions for onset of burnout of the second kind, i.e., deterioration in the transfer of heat leading to an abrupt rise in the temperature of the heating surface, and, as such, associated with desiccation of the thin film of liquid on the wall [2, 3], are investigated. Hydraulic drag, the flowrate of liquid in the film, and the true steam content by volume are among the factors discussed. Two-phase flow patterns in dispersed annular flow are characterized by the combined motion of the three components of the mixture: vapor, the liquid wall film, and droplets. The assumption entertained is that each component of the mixture acquires its own velocity, and that the temperature of the mixture is equal, in each cross section through the channel, to the saturation temperature at the pressure prevailing in the particular cross section.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 78–88, July–August, 1973.  相似文献   

14.
Film thickness distributions in upward vertical air–water annular flow have been determined using planar laser-induced fluorescence (PLIF). Film thickness data are frequently used to estimate interfacial shear and pressure loss. This film roughness concept has been used in a number of models for annular flow of varying complexity. The PLIF data are presently applied to the single-zone interfacial shear correlation of Wallis; the more detailed model of Owen and Hewitt; and the two-zone (base film and waves) model of Hurlburt, Fore, and Bauer. For the present data, these models all under-predict the importance of increasing liquid flow on pressure loss and interfacial shear. Since high liquid flow rates in annular flow induce disturbance wave and entrainment activity, further modeling in these areas is advised.  相似文献   

15.
In this study, non-intrusive pressure drop, liquid base film thickness distribution, and wave behavior measurements have been obtained for 206 horizontal annular two-phase (air–water) flow conditions in 8.8, 15.1, and 26.3 mm ID tubes. Reliable wave velocity measurements are available for 185 of these flow conditions, while 131 flow conditions allow for reliable wave frequency measurements. The wave velocity is found to be predicted to within 9% by gas friction velocity and 6% by an optimized correlation of similar structure. Wave frequency can also be predicted with a simple correlation to within 5% for the 8.8 and 15.1 mm tubes, but a separate relation is required to explain 26.3 mm frequency data. The differences in wave behavior between the annular and wavy-annular/wavy regimes are also discussed.  相似文献   

16.
This paper is a continuation of the authors’ previous work. Two-phase air–water flow experiments are performed in a horizontal circular micro-channel. The test section is made of a fused silica tube with an inner diameter of 0.15 mm and a length of 104 mm. The flow phenomena, which are liquid/unstable annular alternating flow (LUAAF), liquid/annular alternating flow (LAAF), and annular flow, are observed and recorded by a high-speed camera mounted together with a stereozoom microscope. A flow pattern map is presented in terms of the phase superficial velocities and is compared with those of other researchers obtained from different working fluids. Image analysis is performed to determine the void fraction, which increases non-linearly with increasing volumetric quality. It is revealed that the two-phase frictional multiplier data show a dependence on flow pattern rather than mass flux. Based on the present data, a new pressure drop correlation is proposed for practical applications. According to the present study, in general the data for the two-phase air–water flow characteristics are found to comply with those of working fluids other than air–water mixtures.  相似文献   

17.
An experimental investigation has been undertaken to understand the phase split of nitrogen gas/non-Newtonian liquid two-phase flow passing through a 0.5 mm T-junction that oriented horizontally. Four different liquids, including water and aqueous solutions of carboxymethyl cellulose (CMC) with different mass concentrations of 0.1, 0.2 and 0.3 wt%, were employed. Rheology experiments showed that different from water, CMC solutions in this study are pseudoplastic non-Newtonian fluid whose viscosity decreases with increasing the shear rate. The inlet flow patterns were observed to be slug flow, slug–annular flow and annular flow. The fraction of liquid taken off at the side arm for nitrogen gas/non-Newtonian liquid systems is found to be higher than that for nitrogen gas/Newtonian liquid systems in all inlet flow patterns. In addition, with increasing the pseudoplasticity of the liquid phase, the side arm liquid taken off increases, but the increasing degree varies with each flow pattern. For annular flow, the increasing degree is much greater than those for slug and slug–annular flows.  相似文献   

18.
A separated flow model has been developed that is applicable to vertical annular two-phase flow in the purely convective heat transfer regime. Conservation of mass, momentum, and energy are used to solve for the liquid film thickness, pressure drop, and heat transfer coefficient. Closure relationships are specified for the interfacial friction factor, liquid film eddy-viscosity, turbulent Prandtl number, and entrainment rate. Although separated flow models have been reported previously, their use has been limited, because they were tested over a limited range of flow and thermal conditions. The unique feature of this model is that it has been tested and calibrated against a vast array of two-phase pressure drop and heat transfer data, which include upflow, downflow, and microgravity flow conditions. The agreements between the measured and predicted pressure drops and heat transfer coefficients are, on average, better or comparable to the most reliable empirical correlations. This separated flow model is demonstrated to be a reliable and practical predictive tool for computing two-phase pressure drop and heat transfer rates. All of the datasets have been obtained from the open literature.  相似文献   

19.
Measurements were conducted on Refrigerant-134a flowing through short tube orifices with length-to-diameter (L/D) ratios ranging from 5 to 20. Both two-phase and subcooled liquid flow conditions entering the short tube were examined for upstream pressures ranging from 896 to 1448 kPa and for qualities as high as 10% and subcoolings as high as 13.9°C. Data were analyzed as a function of the main operating variables and tube geometry. Semi-empirical models for both single- and two-phase flow at the inlet of the short tubes were developed to predict the mass flow of Refrigerant-134a through short tube orifices.

Choked flow conditions for Refrigerant-134a were typically established when downstream pressures were reduced below the saturation pressure corresponding to the inlet temperature. The flow rate strongly depended on the upstream pressure and upstream subcooling/quality. The mass flow also depended on cross-sectional area and short tube length. The mass flow model utilized a modified orifice equation that formulated the mass flow as a function of normalized operating variables and short tube geometry. For a two-phase flow entering the short tube, the modified orifice equation was corrected using a theoretically derived expression that related the liquid portion of the mass flow under two-phase conditions to a flow that would occur if the flow were a single-phase liquid. It was found that for sharp-edged short tubes with single- and two-phase flow, approximately 95% of the measured data and model's prediction were within ±15% of each other.  相似文献   


20.
Numerical investigation of a perturbed swirling annular two-phase jet   总被引:1,自引:0,他引:1  
A swirling annular gas–liquid two-phase jet flow system has been investigated by solving the compressible, time-dependent, non-dimensional Navier–Stokes equations using highly accurate numerical methods. The mathematical formulation for the flow system is based on an Eulerian approach with mixed-fluid treatment while an adjusted volume of fluid method is utilised to account for the gas compressibility. Surface tension effects are captured by a continuum surface force model. Swirling motion is applied at the inlet while a small helical perturbation is also applied to initiate the instability. Three-dimensional spatial direct numerical simulation has been performed with parallelisation of the code based on domain decomposition. The results show that the flow is characterised by a geometrical recirculation zone adjacent to the nozzle exit and by a central recirculation zone further downstream. Swirl enhances the flow instability and vorticity and promotes liquid dispersion in the cross-streamwise directions. A dynamic precessing vortex core is developed demonstrating that the growth of such a vortex in annular configurations can be initiated even at low swirl numbers, in agreement with experimental findings. Analysis of the averaged results revealed the existence of a geometrical recirculation zone and a swirl induced central recirculation zone in the flow field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号