首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermoplastic polyurethane/silica nanocomposite fibers with good mechanical properties were prepared by electrospinning, using colloidal silica as the source of silica and dimethyl formamide as the solvent. The fiber morphology was examined by field emission scanning electron microscopy. The average fiber diameter is about 0.8 μm with 0–10 wt % silica, and silica nanoparticles were observed on all fiber surfaces. X‐ray photoelectron spectroscopy analysis of Si in combination with transmission electron microscopy observation suggest that silica nanoparticles have a fairly uniform distribution in the fibers rather than enriching on the fiber surfaces. Tensile tests show that the incorporation of silica nanoparticles can bring about a significant reinforcing effect without decreasing the ductility. The reinforcing effect is further confirmed by dynamic mechanical analysis. The thermoplastic polyurethane/silica composite fiber mats can adsorb gold nanoparticles after further treatment with 3‐aminopropyltriethoxysilane, demonstrating that the composite fibers could be used as functional fibers by using the properties of silica nanoparticles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

2.
PP/TiO2 nanocomposites were prepared from an original method based on the hydrolysis‐condensation (sol–gel method) reactions of titanium alkoxide inorganic precursor premixed with polypropylene (PP) under molten conditions. Nanocomposites with a mean diameter of primary particles lower than 5 nm were then prepared. The TiO2 particle dispersion in the PP matrix was characterized over a wide length scale from the combination of small angle X‐ray scattering, transmission electron microscopy, and linear viscoelasticty of molten nanocomposites. As a result, a fractal structure of these particles was highlighted at the highest concentration (φr ≥ 0.014) with a characteristic aggregation size daggr ≈ 130 nm. The relationships between fractal structure and linear viscoelastic have been discussed from the main works of the literature on the reinforcement of nanocomposites. The drastic alteration of the terminal relaxation zone (solid‐like behavior) is correlated to the formation of an aggregate‐particle network. The study of the nonlinear viscoelastic behavior (Payne effect) agrees qualitatively with this reinforcement mechanism. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1213–1222, 2010  相似文献   

3.
Nanocomposites based on poly(ethylene terephthalate) (PET) and expanded graphite (EG) have been prepared by in situ polymerization. Morphology of the nanocomposites has been examined by electronic microscopy. The relationship between the preparation method, morphology, and electrical conductivity was studied. Electronic microscopy images reveal that the nanocomposites exhibit well dispersed graphene platelets. The incorporation of EG to the PET results in a sharp insulator‐to‐conductor transition with a percolation threshold (?c) as low as 0.05 wt %. An electrical conductivity of 10?3 S/cm was achieved for 0.4 wt % of EG. The low percolation threshold and relatively high electrical conductivity are attributed to the high aspect ratio, large surface area, and uniform dispersion of the EG sheets in PET matrix. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

4.
Electrically and thermally conductive high‐density polyethylene composites filled with hybrid fillers, multiwall carbon nanotubes (MWCNTs) and silver nanoparticles (Ag‐NPs), have been prepared in the melt state. The investigation of their electrical and thermal conductivities while comparing with high‐density polyethylene/MWCNT binary composites shows that the addition of only 3 vol% of Ag‐NPs does not reduce the electrical percolation threshold (Pc) that remains as low as 0.40 vol% of MWCNTs but leads to an increase in the maximum dc electrical conductivity of PE/MWCNT composites by two orders of magnitudes. Moreover, the association of both Ag‐NPs and carbon nanotube particles improved our composite's thermal conductivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The electrical volume conductivity σ of antimony‐doped tin oxide (ATO)–acrylate nanocomposite hybrid coatings was investigated. The relation between σ and the volume filler fraction p was analyzed for the ATO‐acrylate coatings containing ATO nanoparticles grafted with different amounts of 3‐methacryloxy‐propyl‐trimethoxy‐silane coupling agent. Percolation thresholds were observed at very low filler fractions (1–2 vol %) for the coatings containing ATO nanoparticles with a low amount of surface grafting. A modified effective medium approximation (EMA) model was introduced. This model takes into consideration different distances between adjacent semiconductive particles in the particle network. The model elucidates how self‐arrangement of the particles influences the location of the percolation threshold in the log σ ? p plot. The modified EMA model can successfully explain the multiple transition behavior and the variable percolation thresholds found for the ATO‐acrylate nanocomposite hybrid coatings. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2147–2160, 2007  相似文献   

7.
In this work, we have synthesized nanocomposites made up of a metal–organic framework (MOF) and conducting polymers by polymerization of specialty monomers such as pyrrole (Py) and 3,4‐ethylenedioxythiophene (EDOT) in the voids of a stable and biporous Zr‐based MOF ( UiO‐66 ). FTIR and Raman data confirmed the presence of polypyrrole ( PPy ) and poly3,4‐ethylenedioxythiophene ( PEDOT ) in UiO‐66‐PPy and UiO‐66‐PEDOT nanocomposites, respectively, and PXRD data revealed successful retention of the structure of the MOF. HRTEM images showed successful incorporation of polymer fibers inside the voids of the framework. Owing to the intrinsic biporosity of UiO‐66 , polymer chains were observed to selectively occupy only one of the voids. This resulted in a remarkable enhancement (million‐fold) of the electrical conductivity while the nanocomposites retain 60–70 % of the porosity of the original MOF. These semiconducting yet significantly porous MOF nanocomposite systems exhibited ultralow thermal conductivity. Enhanced electrical conductivity with lowered thermal conductivity could qualify such MOF nanocomposites for thermoelectric applications.  相似文献   

8.
Polyacrylate/silica nanocomposite latex particles were prepared by in situ emulsion polymerization of acrylate monomers initiated by 2,2′-azobis(2-amidinopropane)dihydrochloride (AIBA) adsorbed by silica nanoparticles. The anchoring of polyacrylate (ACR) onto silica nanoparticles was achieved through the physical absorption and chemical grafting reaction. The elution and HF etching experiments showed that most silica nanoparticles were encapsulated by ACR to form the raspberry-like ACR/silica nanocomposite latex particles. The silica nanoparticles with a greater grafting degree of ACR tended to locate in the bulk of the polymer, and the silica particle with a lower grafting degree would not be combined with polymer latex particles and always remained in water phase. The formation of the final ACR/silica nanocomposite latex particles included the anchoring of ACR onto silica primary particles, aggregation of silica primary particles to form the silica-containing latex particles, and the growth of latex particles.  相似文献   

9.
Using poly(amic acid) (PAA) as a precursor followed by thermal imidization, the polyimide/silica nanocomposite films were prepared via an improved sol–gel process and a blending process, respectively. FT‐IR, TEM and TGA measurements were used to characterize the structure and properties of the obtained films. The results confirmed that the introduction of silica did not yield negative effects on the conversion of the PAA precursor to the polyimide. With the increase of silica content, the aggregation of silica appeared in the polyimide matrix, and the thermal stability decreased slightly for both kinds of films. The dielectric constant (ε) of both films increased slowly with the increase of the silica concentration. The dielectric constant of the obtained polyimide/silica nanocomposite films displayed good stability within a wide range of temperatures or frequency. Based on modeling relation between ε and silica content, the difference in dielectric properties for two kinds of nanocomposites are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
New nanocomposite materials based on polyurethane intercalated into organoclay layers have been synthesized via in situ polymerization. The syntheses of polyurethane–organoclay hybrid films were carried out by swelling the organoclay [12‐aminododecanoic acid montmorillonite] into different kinds of diols followed by addition of diisocyanate then casting in a film. The homogeneous dispersion of MMT in the polymer matrix is evidenced by scanning electron microscope and x‐ray diffraction, which showed the disappearance of the peak characteristic to d001 spacing. It was found that the presence of organoclay has improved the thermal, solvent resistance and mechanical properties. Also, the tensile strength is increased with increasing the organoclay contents to 20% by the ratio 182% related to the PU with 0% organoclay. On the contrary, the elongation has decreased with increasing the organoclay contents. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Surlyn®/silicate hybrid materials were produced via diffusion‐controlled polymer in situ sol–gel reactions for tetraethylorthosilicate. The heterogeneous morphologies of these materials were inspected with transmission electron (TEM), atomic force (AFM), and environmental scanning electron microscopic methods. The silicate uptake was highly dependent on the water affinity of the particular Surlyn® form (acid or ionic) rather than on the affinity of the solvent. The morphology consisted of silicate particles with diameters that were on the order of tens of nanometers. Hence, these materials can be classified as nanocomposites. The particle size distributions in both the TEM and AFM images for all composites appeared to be narrow, with un‐neutralized Surlyn® exhibiting a broader distribution. Larger particles were found near the film surfaces, and the silicon elemental distribution across the film thickness indicated higher concentrations near the surfaces, which is most likely due to the fact that the sol–gel reaction is diffusion controlled in these polymeric media. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1563–1571, 2003  相似文献   

12.
Summary: We reported a method for compensating the birefringence of optical polymers by doping them with inorganic birefringent crystals. In this method, an inorganic birefringent material is chosen that has the opposite birefringence to the polymer and needle-like shape crystals which are oriented when the polymer chains are oriented. The birefringence of the polymer is thus compensated by the opposing birefringence of the crystal. Orientation behavior of the needle-like crystals and polymers was investigated. The orientation function of the needle-like crystal was increased with an increase in the aspect ratio of the needle-like crystal.  相似文献   

13.
A two-stage process has been developed to generate the silica-based macromonomer through surface-modification of silica with polymerizable vinyl groups. The silica surfaces were treated with excess 2,4-toluene diisocynate (TDI), after which the residual isocyanate groups were converted into polymerizable vinyl groups by reaction with hydroxypropylacrylate (HPA). Thus, polystyrene/silica nanocomposites were prepared by conventional radical copolymerization of styrene with silica macromonomer. The main effecting factors, such as ratios of styrene to the macromonomer, together with polymerization time on the copolymerization were studied in detail. FTIR, DSC and TGA were utilized to characterize the nanocomposites. Experimental results revealed that the silica nanoparticles act as cross-linking points in the polystytene/silica nanocomposites, and the glass transition temperatures of the nanocomposites are higher than that of the corresponding pure polystyrene. The glass transition temperatures of nanocomposites increased with the increasing of silica contents, which were further ascertained by DSC.  相似文献   

14.
15.
UV‐curing technique was employed in this study to prepare polyester‐acrylate nanocomposite films with silane‐grafted silica nanoparticles. Methacryloxypropyl trimethoxysilane was grafted to the surfaces of silica nanoparticles to improve dispersion of silica nanoparticles as well as interfacial adhesion between the resin matrix and silica nanoparticles. The silane‐grafting was confirmed by nuclear magnetic resonance and infrared spectroscopy. The effects of the silane‐grafting on the mechanical and optical properties as well as UV‐curing behavior of the nanocomposite films were investigated. The tensile strength, transmittance, UV‐curing rate, and final chemical conversion of the nanocomposite films were increased by use of the grafted silica nanoparticles as compared to the use of neat silica nanoparticles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This article presents a simple and facile method to fabricate thermoresponsive polymer‐grafted silica particles by direct surface‐initiated photopolymerization of N‐isopropylacrylamide (NIPAM). This method is based on silica particles bearing thiol functionalities, which are transformed into thiyl radicals by irradiation with UV light to initiate the polymerization of NIPAM in aqueous media at room temperature. The photopolymerization of NIPAM could be applied to smaller thiol‐functionalized particles (~48 nm) as well as to larger particles (~692 nm). Hollow poly(NIPAM) capsules could be formed after etching away the silica cores from the composite particles. It is possible to produce tailor‐made composite particles or capsules for particular applications by extending this approach to other vinyl monomers. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1260–1267  相似文献   

17.
We report the entrapment of horseradish peroxidase and quantitative encapsulation of glucose oxidase within silica nanoparticles by utilizing an amine-terminated dendritic template. Our improved strategy employs a water-soluble biomimetic template which is able to catalyze the condensation of Si(OH)(4) to silica nanoparticles while trapping an enzyme inside the mesoporous material. Kinetic analysis shows enzyme functionality to be mostly unchanged. Also, the role of pI and ionic strength within the encapsulation environment was found to strongly influence encapsulation. These results suggest that the electrostatic manipulation of a strong supramolecular silica-precipitating complex of enzyme and dendrimer has the potential of adding a vast array of chemical and biological activity to hybrid materials. [image: see text] Enzyme immobilization within a silica nanocomposite.  相似文献   

18.
Hybrid silica/polystyrene nanoparticles were synthesized by miniemulsion polymerization. With the objective to prepare core‐shell hybrid nanoparticles having narrow particle size distributions (PSDs) as well as a high degree of silica encapsulation, the effect of adding surface modifiers, the size of silica nanoparticles, the ratio styrene/silica, the surfactant concentration, and the presence of ethanol in the reaction mixture were studied. A synergistic effect was observed using oleic acid (OA) together with 3‐(trimethoxysilyl)propyl methacrylate (TPM) in the compatibilization step between the organic phase (monomer) and inorganic nanoparticles (silica). Mono and multinuclear eccentric core‐shell hybrid nanoparticles were obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 935–948, 2009  相似文献   

19.
Uniform poly(methyl methacrylate) (PMMA)/silica nanocomposite fibers containing up to 20 wt % silica were prepared by electrospinning. The electrospun solutions were prepared by mixing a solution of PMMA in dimethyl formamide (DMF) with colloidal silica in methyl ethyl ketone (MEK). The average fiber diameter decreases from 2.49 μm to 1.69 μm when 20 wt % silica is incorporated as a result of considerably increased solution conductivity, although the solution viscosity increases significantly, which should result in opposite effect. Thinner fibers (down to 350 nm) can be obtained by changing DMF/MEK proportion and by the addition of an ammonium salt. Nano‐sized silica particles (10–40 nm) distributes homogeneously in the fibers, as revealed by transmission electron microscopy. Furthermore, the incorporation of silica nanoparticles can change the thermal properties and surface wettability of the fiber mats. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1211–1218, 2009  相似文献   

20.
The development of effective thermally conductive rubber nanocomposites for heat management represents a tricky point for several modern technologies, ranging from electronic devices to the tire industry. Since rubber materials generally exhibit poor thermal transfer, the addition of high loadings of different carbon-based or inorganic thermally conductive fillers is mandatory to achieve satisfactory heat dissipation performance. However, this dramatically alters the mechanical behavior of the final materials, representing a real limitation to their application. Moreover, upon fillers’ incorporation into the polymer matrix, interfacial thermal resistance arises due to differences between the phonon spectra and scattering at the hybrid interface between the phases. Thus, a suitable filler functionalization is required to avoid discontinuities in the thermal transfer. In this challenging scenario, the present review aims at summarizing the most recent efforts to improve the thermal conductivity of rubber nanocomposites by exploiting, in particular, inorganic and hybrid filler systems, focusing on those that may guarantee a viable transfer of lab-scale formulations to technological applicable solutions. The intrinsic relationship among the filler’s loading, structure, morphology, and interfacial features and the heat transfer in the rubber matrix will be explored in depth, with the ambition of providing some methodological tools for a more profitable design of thermally conductive rubber nanocomposites, especially those for the formulation of tires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号