首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
碳纳米管贮氢研究进展   总被引:4,自引:0,他引:4  
唐水花  张良辅  于作龙 《化学通报》2003,66(10):687-695
综述了碳纳米管在实验和理论方面的贮氢研究工作。不同科研工作者得到的实验结果很不一致,重量百分比分布在67%~0.01%之间。理论模拟结果差别相对小一些。碳纳米管中的氢吸附受有效表面积和孔体积的强烈影响,单壁碳纳米管堆积的几何形状在氢吸附中也起着重要作用。不少研究者认为碳纳米管并不是适合的贮氢材料。其贮氢量在1(wt)%以下。  相似文献   

2.
分别用H2O2、强碱(NaOH、KOH)和HNO3处理CNTs。以处理后的CNTs为载体、通过浸渍RuCl3水溶液结合高温H2还原制备Ru/CNTs催化剂,并将其应用在氨分解催化反应中。利用XRD、TPR、TPD-MS表征手段研究了Ru在CNTs表面的分散、还原性能及CNTs表面化学基团,探究催化剂结构-性能间构效关系。结果表明,强碱及双氧水处理CNTs,为其表面引入了数量适宜的羧基、酸酐、酚等官能团,而传统硝酸处理则引入了大量的羧基、酸酐、酯、内酯、酚、醌和羰基等官能团,对CNTs本征结构性质影响很大。经强碱及双氧水处理CNTs上负载Ru后所得催化剂的效果明显优于传统硝酸处理CNTs上负载Ru催化剂。本研究为CNTs的新型处理方法、表面化学官能团分析、提高Ru/CNTs催化分解氨活性提供了新的思路。  相似文献   

3.
The Pt-Sn-B/carbon nanotubes (CNTs) catalyst was prepared by impregnation-chemical reduction method. Its catalytic performance was evaluated by liquid-phase hydrogenation of chloronitrobenzene (CNB). The results showed that the catalyst had higher catalytic performance than common hydrogenation catalysts. The conversion of CNB could reach 99.9%, and the dechlorination of chloroaniline (CAN) was less than 1.9% when catalyzed by Pt-Sn-B/CNTs and more than 8.0% when catalyzed by common hydrogenation catalysts. X-ray diffraction and selected area electron diffraction analysis showed that Pt-Sn-B/CNTs had an amorphous alloy structure that can improve catalytic performance. Transmission electron micrograph image showed that the catalyst particles were highly distributed on the surface of CNTs. The hydrodechlorination of CNB was mainly affected by the unique structure of CNTs and the nature of the amorphous metals on the surface of CNTs. The relationship between the interaction of CNTs and amorphous metals and the catalytic performance of the catalyst is also discussed. Translated from the Chinese Journal of Catalysis, 2005, 26(3) (in Chinese)  相似文献   

4.
研究了碳纳米管(CNTs)氮气热处理后结构的变化, 以及热处理温度对CNTs-LaNi5电极电化学性能的影响. CNTs热处理后, 管壁变薄, 层数变少, 管的外径减小, 更有利于氢气的吸附和脱附. 将碳纳米管与LaNi5储氢合金按质量比1:10混合, 制作成CNTs-LaNi5电极. 800 ℃时CNTs-LaNi5电极的储氢性能最好, 最大容量为519.1 mAh•g-1, 相应的平台电压高达1.19 V. 在500~600 ℃范围内, 随着温度升高, 放电容量有较大幅度的增加; 在600~800 ℃范围内, 随着温度升高, 放电容量有较小幅度的增加; 但到900 ℃时, 放电容量反而下降. 由此可见, CNTs的热处理温度对CNTs-LaNi5电极的电化学储氢性能有着较大的影响. 纯LaNi5电极的放电容量仅为265.6 mAh•g-1, 平台电压仅为0.83 V. 添加了碳纳米管的CNTs-LaNi5电极的电化学活性高于纯LaNi5电极.  相似文献   

5.
碳纳米管负载Pt-Sn-B非晶态催化剂催化氯代硝基苯   总被引:16,自引:0,他引:16  
 用浸渍-化学还原法制备了碳纳米管负载的Pt-Sn-B非晶态催化剂,并采用透射电子显微镜、X射线衍射、选区电子衍射、X射线能谱等表征手段研究了催化剂在碳纳米管表面的存在状态、组成及其非晶性质. 将此催化剂用于三种氯代硝基苯的液相催化加氢反应,结果表明该催化剂具有较好的加氢性能和较高的抑制脱卤性能. 在不添加脱卤抑制剂的情况下,三种氯代硝基苯的转化率均高于99.8%,脱卤率小于1.9%. 而将通用加氢催化剂用于相同的反应时,产物的脱卤率均高于8%. 碳纳米管的特殊结构与表面金属的非晶性质是影响氯代硝基苯加氢性能的主要因素. 讨论了碳纳米管与表面非晶态金属的作用规律及其与催化加氢性能的关系.  相似文献   

6.
分别用H_2O_2、强碱(NaOH、 KOH)和强酸HNO_3处理CNTs.以处理后的CNTs为载体、通过浸渍RuCl_3水溶液结合高温H_2还原制备Ru/CNTs催化剂,并将其应用在氨分解催化反应中.利用XRD、 TPR、 TPD-MS表征手段研究了Ru在CNTs表面的分散、还原性能及CNTs表面化学基团,探究催化剂结构-性能间构效关系.结果表明,强碱及双氧水处理CNTs,为其表面引入了数量适宜的羧基、酸酐、酚等官能团,而传统硝酸处理则引入了大量的羧基、酸酐、酯、内酯、酚、醌和羰基等官能团,对CNTs本征结构性质影响很大.经强碱及双氧水处理CNTs上负载Ru后所得催化剂的效果明显优于传统硝酸处理CNTs上负载Ru催化剂.我们发展的CNTs的新型处理方法为研制高活性Ru/CNTs催化分解氨催化剂提供了新的思路.  相似文献   

7.
镁铜合金储氢材料的制备及对高氯酸铵热分解过程的影响   总被引:4,自引:0,他引:4  
刘磊力  李凤生  支春雷  宋洪昌  杨毅 《化学学报》2008,66(12):1424-1428
采用置换-扩散法制备了镁铜合金储氢材料(Mg2Cu-H), 并对其结构进行了表征. 结果表明, Mg2Cu经过氢化得到的镁铜合金储氢材料不是单一晶相, 而是MgCu2和MgH2的混合物. 用热分析法(DSC)研究了镁铜合金储氢材料对固体火箭推进剂常用氧化剂——高氯酸铵(AP)热分解过程的影响. 结果表明, 镁铜合金储氢材料可以显著促进AP的热分解过程, 加快热分解速率, 降低高温热分解温度, 使DSC表观分解热明显增大. Mg2Cu-H对AP热分解过程的促进作用明显强于Mg2Cu. 随着加入量增加, 镁铜合金储氢材料对AP热分解的催化促进作用增强. 探讨了镁铜合金储氢材料促进AP热分解过程的作用机制.  相似文献   

8.
A series of carbon nanotubes-supported K-Co-Mo catalysts were prepared by a sol-gel method combined with incipient wetness impregnation.The catalyst structures were characterized by X-ray diffraction,N2 adsorption-desorption,transmission electron microscopy and H2-TPD,and its catalytic performance toward the synthesis of higher alcohols from syngas was investigated.The as-prepared catalyst particles had a low crystallization degree and high dispersion on the outer and inner surface of CNTs.The uniform mesoporous structure of CNTs increased the diffusion rate of reactants and products,thus promoting the reaction conversion.Furthermore,the incorporation of CNTs support led to a high capability of hydrogen absorption and spillover and promoted the formation of alkyl group,which served as the key intermediate for the alcohol formation and carbon chain growth.Benefiting from these characteristics,the CNTs supported Mo-based catalyst showed the excellent catalytic performance for the higher alcohols synthesis as compared to the unsupported catalyst and activated carbon supported catalyst.  相似文献   

9.
FeCo-Al_2O_3 catalyst was prepared by an ultrasonic coprecipitation (UC) method for the growth of carbon nanotubes (CNTs) from catalytic decomposition of methane. Its catalytic performance was compared with that of the FeCo-Al_2O_3 catalyst counterparts prepared by stepwise impregnation (I) and conventional coprecipitation (C) methods, respectively. The structure and properties of the catalysts and the CNTs as produced thereon were investigated by means of XRD, XPS, TEM and N_2 adsorption techniques. It was found that the catalyst prepared by the ultrasonic coprecipitation method was more active, and the yield and purity of the synthesized CNTs were promoted evidently. The XPS results revealed that there were more active components on the surface of the catalyst prepared by the ultrasonic coprecipitation method. On the other hand, N_2 adsorption demonstrated that the catalyst prepared by the ultrasonic coprecipitation method conferred larger specific surface area, which was beneficial to dispersion of active components. TEM images further confirmed its higher dispersion. These factors could be responsible for its higher activity for the growth of CNTs from catalytic decomposition of methane.  相似文献   

10.
FeCo-Al2O3 catalyst was prepared by an ultrasonic coprecipitation (UC) method for the growth of carbon nanotubes (CNTs) from catalytic decomposition of methane.Its catalytic performance was compared with that of the FeCo-Al2O3 catalyst counterparts prepared by stepwise impregnation (I) and conventional coprecipitation (C) methods,respectively.The structure and properties of the catalysts and the CNTs as produced thereon were investigated by means of XRD,XPS,TEM and N2 adsorption techniques.It was found that the catalyst prepared by the ultrasonic coprecipitation method was more active,and the yield and purity of the synthesized CNTs were promoted evidently.The XPS results revealed that there were more active components on the surface of the catalyst prepared by the ultrasonic coprecipitation method.On the other hand,N2 adsorption demonstrated that the catalyst prepared by the ultrasonic coprecipitation method conferred larger specific surface area,which was beneficial to dispersion of active components.TEM images further confirmed its higher dispersion.These factors could be responsible for its higher activity for the growth of CNTs from catalytic decomposition of methane.  相似文献   

11.
采用氢电弧等离子体法制备了具有储氢性能的镍铈纳米颗粒,通过扫描电镜、透射电镜、X光电子能谱、X射线粉末衍射、程序升温还原等手段对比表征了氧化铝负载的纳米镍铈催化剂和工业用负载镍催化剂,并以裂解汽油一段加氢反应为模型反应研究了它们的催化性能.研究结果表明,纳米镍铈催化剂的催化活性和储氢性能与催化剂表面的镍铈合金有关,负载性纳米镍铈催化剂的优良选择性与其特殊的制备方法有关.  相似文献   

12.
以具有三维开放网络结构的烧结8 μm-Ni金属纤维(SMF-Ni)为基底, 通过乙烯催化化学气相沉积法在金属纤维表面生长碳纳米管(CNTs), 制备了以金属Ni纤维网络为集流极、CNTs为离子存储库, 尺度跨越宏观、介观和纳米的自支撑薄层大面积CNTs/SMF-Ni(CNTs质量分数为50%)复合电极材料. 用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、N2吸附、脱附等温线和X射线衍射(XRD)等方法对电极材料进行了表征, 并考察了其作为电极对质量分数为0.01%的NaCl水溶液的电容脱盐性能. 自支撑CNTs/SMF-Ni复合电极材料由于具有优异的离子传导和表面电荷传递性能以及较大的介孔表面积, 在1.2 V的工作电压和5 mL/min的水溶液流速下, 对NaCl的电吸附容量和脱盐率分别达159 μmol/g CNTs和57%. 用H2O2对CNTs/SMF-Ni电极材料进行氧化处理后, CNTs表面含氧基团的大量增加增大了材料的亲水性, 从而进一步提升了该复合材料的电容脱盐性能.  相似文献   

13.
The surface of carbon nanotubes (CNTs) was functionalized in different chemical oxidants, hydrogen peroxide, mixed concentrated HNO(3)/H(2)SO(4) and acidic KMnO(4) solution. The influences on the properties of CNTs were systematically investigated, such as the structure, the kinds and the contents of the formed surface oxygen-containing functional groups, the pH(PZC) values and the surface hydrophilicity using XRD, HREM, FTIR and chemical titration. The results show that the kinds and the contents of the surface oxygen-containing groups are dependent on the functionalization methods. The formation of the oxygen-containing groups can decrease pH(PZC) values and improve surface hydrophilicity of CNTs. The dispersion of the supported Pd-Pt particles on the functionalized CNTs and their catalytic activity in the profile reaction of naphthalene hydrogenation to tetralin are both promoted due to the presence of these oxygen-containing groups.  相似文献   

14.
The catalytic properties of Pd alloy thin films are enhanced by a thin sputtered PTFE coating, resulting in profound improvements in hydrogen adsorption and desorption in Pd‐based and Pd‐catalyzed hydrogen sensors and hydrogen storage materials. The remarkably enhanced catalytic performance is attributed to chemical modifications of the catalyst surface by the sputtered PTFE leading to a possible change in the binding strength of the intermediate species involved in the hydrogen sorption process.  相似文献   

15.
We describe the growth of carbon nanotubes (CNTs) from catalytic nanoparticles formed on a nickel surface. For the growth of CNTs, a chemical vapor deposition (CVD) furnace was set up and ethanol was used as carbon source. Observation of SEM images shows that CNTs grew densely on the nickel surface and that nanoparticles play a key role in the growth of the CNTs. XRD and Raman analyses reveal that the obtained products have graphitic pattern of multi-walled carbon nanotubes (MWCNTs). Also HRTEM images confirm clearly that the product was a MWCNT and their diameter was in the range of 20–50 nm.  相似文献   

16.
Nanocomposites of carbon nanotubes (CNTs) with Sn2Sb alloy nanoparticles were prepared by KBH4 reduction of SnCl2 and SbCl3 precursors in the presence of CNTs. SEM and TEM examinations showed that most of the Sn–Sb alloy nanoparticles were present in high dispersion in the CNT web, while others were deposited directly on the outside surface of the carbon nanotubes. Constant current charge and discharge tests using the nanocomposites as Li+ storage compounds showed higher specific capacities than pristine CNTs and better cyclability than unsupported Sn2Sb particles. The first cycle de-lithiation capacity of 580 mAh/g from a CNT–56 wt%Sn2Sb nanocomposite was nevertheless reduced to 372 mAh/g after 80 deep charge and discharge cycles. The uniform dispersion of Sn2Sb alloy in the CNT web and on the surface of CNTs have substantially improved the usability of the Sn2Sb particles to the extent that the nanocomposites of CNTs and Sn2Sb may be considered as a candidate anode material for Li-ion batteries.  相似文献   

17.
The incorporation of 1 mass % of group VI metals (chromium, molybdenum, and tungsten) into 4 mass % of Ni/MgO catalysts was evaluated for the synthesis of carbon nanotubes (CNTs) by the catalytic chemical vapour deposition of ethylene. All materials were characterised by XRD, surface area, TEM, SEM, Raman spectroscopy, and TGA-DTA. The resulting data demonstrated that the addition of group VI metals improved the surface area and metal dispersion, thereby achieving a remarkable enhancement in catalytic growth activity. Among the metals of group VI, Mo was found to be the most effective promoter for catalysing the CNTs’ growth. From TEM observation, long CNTs with a higher degree of graphitization were obtained on the Ni-Mo/MgO catalyst. TGA and DTA analysis showed that the as-grown CNTs over both Ni-Mo and Ni-W/MgO catalysts exhibited higher thermal stability.  相似文献   

18.
LaNi5型储氢合金表面修饰及其电化学性能研究   总被引:3,自引:0,他引:3  
0引言近年来,随着科学技术水平的提高和世界范围环保意识的增强,汽车尾气所造成的环境污染问题日益引起人们的重视[1]。电动汽车的发展可以有效制约燃油汽车所造成的环境污染。MH/Ni电池是一种无污染的“绿色能源”,它具有高比能量、高比功率、长寿命及安全性好等优异性能,非常  相似文献   

19.
MgNi2添加对AB5型储氢合金电化学性能的影响   总被引:1,自引:0,他引:1  
制得了含Mg的AB5型稀土合金, 研究了合金添加Mg后合金电化学性能的变化. 采用ICP, XRD对合金组成和结构进行分析, 并通过EIS、CV、SEM和阳极极化曲线研究了电化学反应机理.  相似文献   

20.
碳纳米管对非晶态NiB合金催化剂性能的影响   总被引:8,自引:0,他引:8  
采用化学还原法制备了非晶态NiB合金,用CNTs-1、CNTs-2、y-Al2O3作载体制备了负载型非晶态NiB合金催化剂.以乙炔选择性加氢为目标反应考察了催化活性和选择性,用TEM、TPD等方法对催化剂进行了表征.TEM结果表明,粒径为8~10nm的NiB粒子均匀分散在CNTs-1外表面,大部分粒径为12~14nm的NiB颗粒在CNTs-2内腔生长,而y-Al2O3载体未能有效提高NiB分散度.用CNTs-1将NiB负载化,明显提高了NiB催化剂乙炔加氢活性.CNTs-1、CNTs-2和y-Al2O3载体对比,CNTs-2作载体促进了催化剂对氢的吸附,减弱了乙炔的吸附,提高了加氢活性和乙烯选择性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号