首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C-1027 is a potent antitumor antibiotic composed of an apoprotein (CagA) and a reactive enediyne chromophore. The chromophore has four distinct chemical moieties, including an ( S)-3-chloro-5-hydroxy-beta-tyrosine moiety, the biosynthesis of which from l-alpha-tyrosine requires five proteins: SgcC, SgcC1, SgcC2, SgcC3, and SgcC4; a sixth protein, SgcC5, catalyzes the incorporation of this beta-amino acid moiety into C-1027. Biochemical characterization of SgcC has now revealed that (i) SgcC is a two-component, flavin adenine dinucleotide (FAD)-dependent monooxygenase, (ii) SgcC is only active with SgcC2 (peptidyl carrier protein)-tethered substrates, (iii) SgcC-catalyzed hydroxylation requires O 2 and FADH 2, the latter supplied by the C-1027 pathway-specific flavin reductase SgcE6 or Escherichia coli flavin reductase Fre, and (iv) SgcC efficiently catalyzes regioselective hydroxylation of 3-substituted beta-tyrosyl-S-SgcC2 analogues, including the chloro-, bromo-, iodo-, fluoro-, and methyl-substituted analogues, but does not accept 3-hydroxy-beta-tyrosyl-S-SgcC2 as a substrate. Together with the in vitro data for SgcC4, SgcC1, and SgcC3, the results establish that SgcC catalyzes the hydroxylation of ( S)-3-chloro-beta-tyrosyl-S-SgcC2 as the final step in the biosynthesis of the ( S)-3-chloro-5-hydroxy-beta-tyrosine moiety prior to incorporation into C-1027. SgcC now represents the first biochemically characterized two-component, FAD-dependent monooxygenase that acts on a carrier-protein-tethered aromatic substrate.  相似文献   

2.
The enediyne antitumor antibiotic C-1027 chromoprotein is produced by Streptomyces globisporus. The biosynthesis of the (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety (boxed) of the C-1027 chromophore (1) from l-tyrosine (3) and its incorporation into 1 are catalyzed by six enzymes: SgcC, SgcC1, SgcC2, SgcC3, SgcC4, ShcC5. In vivo and in vitro characterization of these enzymes delineated this pathway, unveiling a novel strategy for beta-amino acid modification featuring beta-amino acyl-S-carrier protein intermediates. These findings shed new light into beta-amino acid biosynthesis and present a new opportunity to engineer the C-1027 biosynthetic machinery for the production of novel analogues as exemplified by 20-deschloro-C-1027 (4), 20-deschro-22-deshydroxy-C-1027 (5), and 22-deshydroxy-C-1027 (6).  相似文献   

3.
The C-1027 enediyne antibiotic contains an unusual 3-chloro-4,5-dihydroxy-beta-phenylalanine moiety that is thought to be derived from tyrosine by an aminomutase reaction. However, none of the genes identified within the C-1027 gene cluster encode proteins with strong homology to known aminomutases. The sgcC4 gene encodes a protein with strong homology to dehydroalanine-dependent histidine/phenylalanine ammonia lyases. The sgcC4 gene was expressed in E. coli, and overproduced SgcC4 was purified as a His6-tagged fusion protein. Biochemical characterization of the purified SgcC4 establishes that SgcC4 is an aminomutase that catalyzes the conversion of l-tyrosine to (S)-beta-tyrosine and employs 4-methylideneimidazole-5-one (MIO) at its active site. The latter was supported by borohydride and cyanide inhibition studies and confirmed by site-directed mutagenesis. The S153A mutant exhibited a 340-fold decrease in kcat/KM. SgcC4 represents a novel type of aminomutase, extending the known MIO chemistry from ammonia lyases into aminomutases.  相似文献   

4.
Lin S  Huang T  Horsman GP  Huang SX  Guo X  Shen B 《Organic letters》2012,14(9):2300-2303
The SgcC5 condensation enzyme catalyzes the attachment of SgcC2-tethered (S)-3-chloro-5-hydroxy-β-tyrosine (2) to the enediyne core in C-1027 (1) biosynthesis. It is reported that SgcC5 (i) exhibits high stereospecificity toward the (S)-enantiomers of SgcC2-tethered β-tyrosine and analogues as donors, (ii) prefers the (R)-enantiomers of 1-phenyl-1,2-ethanediol (3) and analogues, mimicking the enediyne core, as acceptors, and (iii) can recognize a variety of donor and acceptor substrates to catalyze their regio- and stereospecific ester bond formations.  相似文献   

5.
C-1027 is an extremely potent antitumor agent that causes double-stranded DNA cleavages. It is a unique small molecule-protein complex composed of a highly reactive enediyne chromophore, which upon binding reacts with its target molecule DNA through radical-mediated hydrogen abstraction and an apoprotein that encapsulates the chromophore serving as its carrier to reach DNA. Although C-1027 has favorable properties as an effective drug delivery system, it slowly self-decomposes due to the reactivity of the chromophore toward the apoprotein. Understanding how the C-1027 destroys itself may enable design of its analogues that overcome this limitation. In this paper, mechanistic insights into the self-reactivity of C-1027 that facilitates its own decomposition are described. We provide evidence that the formation of the Gly96 radical, which promotes the oxidative protein scission and the subsequent chromophore release, is the major pathway for the self-decomposition of C-1027. On the basis of the newly isolated products of the self-decomposition, we propose that the apoprotein effectively protects two different structural elements of the chromophore that are essential for its biological activity: the nine-membered enediyne moiety (necessary for DNA cleavage) and the benzoxazine moiety (necessary for DNA intercalation). Using an engineered apoprotein analogue kinetically more stable toward the chromophore radical, we show that enhanced overall properties can be achieved for the natural C-1027 with respect to stability and antitumor activities. The results present the first example of a rationally designed C-1027 analogue reported to display superior in vitro antitumor activity to the natural C-1027. Our findings may have implications for design of proteins that can stably encapsulate highly reactive small molecules.  相似文献   

6.
The biosynthetic gene cluster for the enediyne antitumor antibiotic maduropeptin (MDP) from Actinomadura madurae ATCC 39144 was cloned and sequenced. Cloning of the mdp gene cluster was confirmed by heterologous complementation of enediyne polyketide synthase (PKS) mutants from the C-1027 producer Streptomyces globisporus and the neocarzinostatin producer Streptomyces carzinostaticus using the MDP enediyne PKS and associated genes. Furthermore, MDP was produced, and its apoprotein was isolated and N-terminal sequenced; the encoding gene, mdpA, was found to reside within the cluster. The biosynthesis of MDP is highlighted by two iterative type I PKSs--the enediyne PKS and a 6-methylsalicylic acid PKS; generation of (S)-3-(2-chloro-3-hydroxy-4-methoxyphenyl)-3-hydroxypropionic acid derived from L-alpha-tyrosine; a unique type of enediyne apoprotein; and a convergent biosynthetic approach to the final MDP chromophore. The results demonstrate a platform for engineering new enediynes by combinatorial biosynthesis and establish a unified paradigm for the biosynthesis of enediyne polyketides.  相似文献   

7.
C-1027, an extremely potent antitumor agent, is composed of a highly reactive chromophore and an apoprotein. While the chromophore causes DNA cleavage, the apoprotein functions as its carrier. Despite these ideal properties as an anticancer agent, C-1027 slowly self-decomposes through chromophore-mediated abstraction of hydrogens from the apoprotein. In this paper, we report the design and preparation of an engineered C-1027 apoprotein that decelerates this self-decomposition pathway. Our design is based on the kinetic isotope effect, and deuterium is incorporated instead of protium into the hydrogen-abstraction site. The deuterated supra C-1027 was found to have a 4-fold longer lifetime than the natural C-1027.  相似文献   

8.
We report the synthesis of the fully functionalized seco-acid of the C-1027 chromophore. The key reaction is a LiN(TMS)2/CeCl3-promoted acetylide-aldehyde condensation to construct the highly strained nine-membered diyne. Appropriate functionalization of the substrates significantly affects the yield of the cyclization. The present findings will be the basis of further studies toward the total synthesis of the C-1027 chromophore.  相似文献   

9.
The functional roles of all proposed enzymes involved in the post-PKS redox reactions of the biosynthesis of various landomycin aglycones were thoroughly studied, both in vivo and in vitro. The results revealed that LanM2 acts as a dehydratase and is responsible for concomitant release of the last PKS-tethered intermediate to yield prejadomycin (10). Prejadomycin (10) was confirmed to be a general pathway intermediate of the biosynthesis. Oxygenase LanE and the reductase LanV are sufficient to convert 10 into 11-deoxylandomycinone (5) in the presence of NADH. LanZ4 is a reductase providing reduced flavin (FMNH) co-factor to the partner enzyme LanZ5, which controls all remaining steps. LanZ5, a bifunctional oxygenase-dehydratase, is a key enzyme directing landomycin biosynthesis. It catalyzes hydroxylation at the 11-position preferentially only after the first glycosylation step, and requires the presence of LanZ4. In the absence of such a glycosylation, LanZ5 catalyzes C5,6-dehydration, leading to the production of anhydrolandomycinone (8) or tetrangulol (9). The overall results provided a revised pathway for the biosynthesis of the four aglycones that are found in various congeners of the landomycin group.  相似文献   

10.
The biosynthetic gene cluster for the kutzneride family of hexapeptidolactones includes the four-gene cassette ktzABCD postulated to generate a nonproteinogenic amino acid. Encoded by this cassette are the nonheme FeII-dependent halogenase KtzD and the acyl-CoA dehydrogenase-like flavoprotein KtzA, proposed to work in conjunction with adenylating protein KtzB and carrier protein KtzC. In the present work, we report the in vitro reconstitution of this four-protein system and identify the final product as (1S,2R)-allocoronamic acid bound in thioester linkage to KtzC. Further analysis of KtzD and KtzA support a biosynthetic pathway that involves KtzD-mediated generation of a gamma-chloroisoleucyl intermediate which is cyclized to the final product by KtzA without redox participation of the bound flavin cofactor. This work introduces a new monomer for potential incorporation into nonribosomal peptides and validates the unique strategy for its biosynthesis.  相似文献   

11.
The C-3 deoxygenation step in the biosynthesis of d-forosamine (4-N,N-dimethylamino-2,3,4,6-tetradeoxy-d-threo-hexopyranose), a constituent of spinosyn produced by Saccharopolyspora spinosa, was investigated. The spnQ gene, proposed to encode a TDP-4-keto-2,6-dideoxy-d-glucose 3-dehydratase was cloned and overexpressed in E. coli. Characterization of the purified enzyme established that it is a PMP and iron-sulfur containing enzyme which catalyzes the C-3 deoxygenation in a reductase-dependent manner similar to that of the previously well characterized hexose 3-dehydrase E1 from Yersinia pseudotuberculosis. However, unlike E1, which has evolved to work with a specific reductase partner present in its gene cluster, SpnQ lacks a specific reductase, and works efficiently with general cellular reductases ferredoxin/ferredoxin reductase or flavodoxin/flavodoxin reductase. SpnQ also catalyzes C-4 transamination in the absence of an electron transfer intermediary and in the presence of PLP and l-glutamate. Under the same conditions, both E1 and the related hexose 3-dehydrase, ColD, catalyze C-3 deoxygenation. Thus, SpnQ possesses important features which distinguish it from other well studied homologues, suggesting unique evolutionary pathways for each of the three hexose 3-dehydrases studied thus far.  相似文献   

12.
The pH dependent behavior of two flavin cofactors, flavin-adenine dinucleotide (FAD) and flavin mononucleotide (FMN), has been characterized using femtosecond transient absorption spectroscopy for the first time. The flavin excited state was characterized in three states of protonation (Fl(-), Fl, and FlH(+)). We found that Fl and Fl(-) exhibit the same excited state absorption but that the lifetime of Fl(-) is much shorter than that of Fl. The transient absorption spectrum of FlH(+) is significantly different from Fl and Fl(-), suggesting that the electronic properties of the flavin chromophore become appreciably modified by protonation. We further studied the excited state protonation of the flavin and found that the protonation sites of the flavin in the ground and excited state are not equivalent. In the case of FAD, its excited state dynamics are controlled by the two conformations it adopts. At low and high pH, FAD adopts an "open" conformation and behaves the same as FMN. In a neutral pH range, FAD undergoes a fast excited state deactivation due to the "stacked" conformer. The transition from stacked to open conformer occurs at pH ~ 3 (because of adenine protonation) and pH ~ 10 (because of flavin deprotonation).  相似文献   

13.
Upon treatment with organolithium compounds, 2-alkyl-4,5-dihydrofurans undergo ring opening through β-elimination leading to the corresponding 3,4-dien-1-ol. If 3-chloro-2-methyl-4,5-dihydrofuran serves as a substrate, however, no 3-chloro-3,4-dien-1-ol can be isolated though it acts as a reaction intermediate. Its formation is slow compared to subsequent replacement of halogen by the organic moiety of the alkyllithium reagent. Thus penta-3,4-dien-1-ols are formed, which may isomerize, however, under certain reaction conditions affording terminal acetylenes. These as well as their allene precursors can be converted with sodium in ammonia into pent-4-en-1-ol or, respectively, pent-3-en-1-ol derivates.  相似文献   

14.
The post-polyketide synthase modification of geldanamycin (1) biosynthesis is of interest as a means of introducing structural diversity into the compound. From the inactivation of a gene encoding carbamoyltransferase, we demonstrated that the C-17 hydroxylation and the C-21 oxidation precede O-carbamoylation and that the hypothetical progeldanamycin does not possess a double bond at C-4 and C-5. More importantly, our result revealed new intermediates 4,5-dihydro-7-O-descarbamoyl-7-hydroxygeldanamycin (3) and 4,5-dihydrogeldanamycin (5), indicating that O-carbamoylation occurs prior to the C-4,5 cis double bond formation in geldanamycin biosynthesis.  相似文献   

15.
Biotransformation is an effective method to generate new derivatives from natural products. Combination of various enzymes or whole-cell biocatalysts creates new opportunities for natural product biosynthesis. Dihydroresorcylide (1) is a phytotoxic macrolactone from Acremonium aeae. It was first chlorinated at C-11 by an engineered Escherichia coli BL21-CodonPlus (DE3)-RIL/pJZ54 strain that overexpresses a fungal flavin-dependent halogenase, and subsequently glycosylated at 12-OH by Beauveria bassiana ATCC 7159, giving rise to a novel derivative, 11-chloro-4'-O-methyl-12-O-beta-D-glucosyl-dihydroresorcylide (3). Although 1 can be converted into a new 4'-O-methyl-glucosylated derivative 4 by B. bassiana, this product cannot be further chlorinated by E. coli BL21-CodonPlus (DE3)-RIL/pJZ54 to afford 3. The sequence of these two biotransformation steps was thus restricted and not interchangeable. This sequential biotransformation approach can be applied to other structurally similar natural products to create novel derivatives.  相似文献   

16.
Raman spectra of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) in neutral aqueous solutions have been observed with excitations at 600.0, 363.8, 351.1, 337.1, and 257.3 nm. It has been suggested that, in general, an excitation in the absorption band of the second or the third longest waveleng (instead of the first) is an effective means for observing a resonance Raman spectrum of a chromophore without fluorescence disturbance.  相似文献   

17.
The blue light photoreceptor cryptochrome 3 (cry3) from Arabidopsis thaliana was characterized at room temperature in vitro in aqueous solution by optical absorption and emission spectroscopic studies. The protein non-covalently binds the chromophores flavin adenine dinucleotide (FAD) and N5,N10-methenyl-5,6,7,8-tetrahydrofolate (MTHF). In the dark-adapted state of cry3, the bound FAD is present in the oxidized form (FAD(ox), ca. 38.5%), in the semiquinone form (FADH., ca. 5%), and in the fully reduced neutral form (FAD(red)H2) or fully reduced anionic form (FAD(red)H-, ca. 55%). Some amount of FAD (ca. 1.5%) in the oxidized state remains unbound probably caused by chromophore release and/or denaturation. F?rster-type energy transfer from MTHF to FAD(ox) is observed. Photo-excitation reversibly modifies the protein conformation causing a slight rise of the MTHF absorption strength and an increase of the MTHF fluorescence efficiency (efficient protein conformation photo-cycle). Additionally there occurs reversible reduction of bound FAD(ox) to FAD(red)H2 (or FAD(red)H-, FAD(ox) photo-cycle of moderate efficiency), reversible reduction of FADH. to FAD(red)H2 (or FAD(red)H-, FADH. photo-cycle of high efficiency), and modification of re-oxidable FAD(red)H2 (or FAD(red)H-) to permanent FAD(red)H2 (or FAD(red)H-) with low quantum efficiency. Photo-excitation of MTHF causes the reversible formation of a MTHF species (MTHF', MTHF photo-cycle, moderate quantum efficiency) with slow recovery to the initial dark state, and also the formation of an irreversible photoproduct (MTHF').  相似文献   

18.
Yang D  Li W  Huang SX  Shen B 《Organic letters》2012,14(5):1302-1305
The tautomycetin (TTN) biosynthetic gene cluster has been recently cloned and sequenced from Streptomyces griseochromogenes, unveiling four genes, ttnCDFI, as candidates to encode the tailoring steps for TTN biosynthesis. It is reported that (i) TtnC plays no essential role in TTN biosynthesis, (ii) TtnI catalyzes C-5 oxidation, and (iii) combining the previous findings with TtnFD, the tailoring steps from TTN F-1 to TTN take place in the order of TtnF-catalyzed C-1"/C-2" dehydration, TtnD-catalyzed C-3" decarboxylation, and TtnI-catalyzed C-5 oxidation.  相似文献   

19.
Fluorescence Correlation Spectroscopy (FCS) was used to investigate the excited-state properties of flavins and flavoproteins in solution at the single molecule level. Flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and lipoamide dehydrogenase served as model systems in which the flavin cofactor is either free in solution (FMN, FAD) or enclosed in a protein environment as prosthetic group (lipoamide dehydrogenase). Parameters such as excitation light intensity, detection time and chromophore concentration were varied in order to optimize the autocorrelation traces. Only in experiments with very low light intensity ( < 10 kW/cm2), FMN and FAD displayed fluorescence properties equivalent to those found with conventional fluorescence detection methods. Due to the high triplet quantum yield of FMN, the system very soon starts to build up a population of non-fluorescent molecules, which is reflected in an apparent particle number far too low for the concentration used. Intramolecular photoreduction and subsequent photobleaching may well explain these observations. The effect of photoreduction was clearly shown by titration of FMN with ascorbic acid. While titration of FMN with the quenching agent potassium iodide at higher concentrations ( > 50 mM of I-) resulted in quenched flavin fluorescence as expected, low concentrations of potassium iodide led to a net enhancement of the de-excitation rate from the triplet state, thereby improving the fluorescence signal. FCS experiments on FAD exhibited an improved photostability of FAD as compared to FMN: As a result of stacking of the adenine and flavin moieties, FAD has a considerably lower triplet quantum yield. Correlation curves of lipoamide dehydrogenase yielded correct values for the diffusion time and number of molecules at low excitation intensities. However, experiments at higher light intensities revealed a process which can be explained by photophysical relaxation or photochemical destruction of the enzyme. As the time constant of the process induced at higher light intensities resembles the diffusion time constant of free flavin, photodestruction with the concomitant release of the cofactor offers a reasonable explanation.  相似文献   

20.
Abstract— The photooxidation of octaethyl-2, 3-dihydrobilindione ( 2 ) as a model for the Pr-chromophore has been studied in acidic methanol. When 2 is titrated with HCl to the cation and irradiated under N2 with an excess of I2, violin and rhodin type pigments are formed bearing methoxy-substituents at either C-4,5 or C-15,16, respectively. The reaction is slowed down as compared to neutral conditions, it is no longer regioselective at the C-5 methine bridge, and the formation of dimers is suppressed. From the data of this and earlier chemical model studies on the photooxidation of 2 , and the known properties of phytochrome, a reaction for the Pr→ Pfr phototransformation is suggested, in which the chromophore is attacked by the protein moiety in a sequence of oxidation and nucleophilic substitution, which may lead to a primary redox signal for the physiological response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号