首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An aqueous synthetic route has been developed for the preparation of mercaptosuccinic acid(MSA)-capped CdTe quantum dots (QDs) using TeO2 as tellurium source and sodium borohydride as reductant.The size and the emission color of CdTe QDs can be tuned by varying the reflux time.The obtained QDs were characterized by photoluminescence(PL) spectroscopy,X-ray powder diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM).The results show that the CdTe QDs were of zinc-blende crystal structure in a sphere-like shape.  相似文献   

2.
Current study reports a rapid one-pot non-hydrolytic condition in the synthesis of Sn O2 QDs nanopowder using tin(II) stearate(Sn(St)2) as environmentally-benign organometallic precursor,which is an unprecedentedly employed-compound in preceding Sn O2 nanopowder productions.The as-synthesized Sn O2 QDs that are hydrophobic can be easily transferred from organic solvent to aqueous solution through a robust ligand exchange method.The stearate-capping ligands on the surface of QDs can be replaced by beta-cyclodextrin(β-CD) and eventually render the QDs highly water soluble,which ultimately make it exhibit bi-functionality for different liquid medium applications.Structural characterizations reveal that the bi-functional QDs are indeed well-matched with the standard rutile Sn O2 cassiterite phase without the presence of any impurities.The QDs can be interchangeably used as photocatalyst for both aqueous and non-aqueous phase,where it shows significant enhancement of hydrogen gas production as compared to that of commercial Sn O2 nanopowder.  相似文献   

3.
A simple one-bath strategy has been developed to synthesize a novel CdTe@SiO2@MIP(molecularly imprinted and silica-functionalized CdTe quantum dots,MISFQDs),in which a silica shell was coated on the surface of CdTe quantum dots (CdTe@SiO2 QDs) and then a polymer for selective recognition of 4-chlorophenol(4-CP) was constructed on the surface of CdTe@SiO2 QDs using mercaptoacetic acid as stabilizer,3-aminopropyl-trimethoxysilane(APTES) as functional monomers and tetraethoxysilane(TEOS) as crosslink agent.The structures of CdTe@SiO2@MIP were analyzed by ultraviolet-visible absorption. Fluorescence,FT-IR spectrum and powder X-ray diffraction.The application and characterization of the CdTe@SiO2@MIP were investigated by experiments.All results indicated that the CdTe@SiO2@MIP can selectively recognize 4-chlorophenol.  相似文献   

4.
In this work, the capillary electrophoresis mobility shift assay (CEMSA) was first adopted to study the interaction of protein with quantum dots (QDs). In this study, bovine serum albumin (BSA) and CdTe QDs were used as model samples. We observed that BSA was facilely adsorbed to CdTe QDs surface, and the QD-BSA complex was formed by a 1:1 stoichiometric ratio. A value of 2.17 4-0.27 × 10^6 mol^-1 L^-1 (at 25 ℃) for the association constant was obtained by CEMSA.  相似文献   

5.
In this study,the preparation of a new kind of magnetic and luminescent Fe3O4/CdTe nanocomposites was demonstrated. Superparamagnetic Fe3O4 nanoparticles were first synthesized by hydrothermal coprecipitation of ferric and ferrous ions,followed by the modification of their surfaces with tetramethylammonium hydroxide(TMAOH) and the chemical activation with aspartic acid.The surface-modified Fe3O4 nanoparticles were then covalently coated with CdTe quantum dots(QDs),which were modified with mercaptoacetic acid(MPA),to form the Fe3O4/CdTe magnetic and luminescent nanocomposites through the coordination of the amino groups on the surfaces of Fe3O4 and the carboxyl groups on CdTe QDs.The structure and properties of as-synthesized nanocomposites were characterized.It was indicated that the nanocomposites possessed structure with an average diameter of 40- 50 nm,yellow-green emission feature and room temperature ferro-magnetism.Both the fluorescence and UV-vis absorption spectra of the nanocomposites showed a blue shift comparing with those of CdTe QDs.The mechanism of the blue shift was presented.The nanocomposites retained the ferromagnetic property with a saturation magnetization of 8.9 emu/g.  相似文献   

6.
A novel bovine serum albumin(BSA) imprinted Mn-doped ZnS quantum dots(Mn:ZnS QDs) is firstly reported.The molecular imprinted polymer(MIP) functionalized Mn:ZnS QDs(Mn:ZnS@SiO2@MIP) include the preparation of Mn:ZnS QDs,the coating of silica on the surface of Mn:ZnS QDs,and the functional polymerization by sol-gel reaction using 3-aminophenylboronic acid as the functional and cross-linking monomer in the presence of BSA(Mn:ZnS@SiO2@MIP-BSA),and then the elution of the imprinted BSA on the surface of Mn:ZnS@SiO2 QDs.The results showed that the phosphorescence of Mn:ZnS@SiO2@MIP is stronger quenched by BSA than that of non-imprinted one(Mn:ZnS@SiO2@NIP),indicating that the selectivity of the imprinted Mn:ZnS quantum dots toward BSA is superior to that of non-imprinted one.  相似文献   

7.
Thiol-stabilized PbS quantum dots (QDs) with dimensions 3-5 nm capped with a mixture of 1-thioglycerol/dithioglycerol (TGL/DTG) were coUoidally prepared at room temperature. Room temperature photoluminescence quantum efficiency of freshly prepared PbS QDs (7%-11%) remained higher than 5% upon aging for three weeks when the nanocrystals (NCs) were stored in an ice-bath in the dark, and higher than 5%for at least five weeks when extra DTG ligands were introduced into the nanocrystal solution followed by stirring every two weeks. Poly(N-isopropyl acrylamide) (PNIPAM) microgels were produced via precipitation polymerization with dimensions of ca. 230 nm and polydispersity of 3-5%. Incorporation of PbS QDs into PNIPAM microgels indicated that PbS can be incorporated into the interior of microgel particles and not at the microgel interface. The combination of reasonable room temperature quantum efficiency and strong, efficient luminescence covering the 1.3-1.55 μm telecommunication window makes these nanoparticles promising materials in optical devices and telecommunications.  相似文献   

8.
合成了巯基乙酸(TGA)修饰的壳核型CdTe/CdS量子点(TGA-CdTe/CdS QDs)。 利用紫外-可见光谱吸收、荧光光谱研究TGA-CdTe/CdS QDs与盐酸药根碱(JH)的相互作用机理。 在pH值为7.4的tris-HCl缓冲溶液介质中,QDs与JH相互作用后使QDs的荧光呈线性猝灭,并有良好的线性关系(r=0.999 1),线性范围0.011~10 mg/L,检出限(3σ)为3.3×10-3 mg/L,因此可以作为一种快速、简便、定量测定盐酸药根碱的新方法。  相似文献   

9.
Water-soluble CdSe/ZnS quantum dots (QDs) were prepared via a simple sonochemical procedure using b-cyclodextrin (CD) as surface coating agent. The QDs displayed a sensitive emission enhancement for anthracene over other related polycyclic aromatic hydrocarbons, and the detection limit was around 1.6 10 8 mol/L.  相似文献   

10.
采用热注入法制备了粒径为7.9 nm的Cu12Sb4S13量子点(CAS QDs),并利用旋涂法在室温下制备了结构为FTO/CAS QDs/Au(其中FTO为导电玻璃)的阻变存储器(RRAM).在光照条件下,该三明治结构的RRAM呈现典型的双极性阻变开关特征,具有-0.38 V/0.42 V的低工作电压和105的高阻变开关比,并表现出优异的数据保持性和耐久性.在持续工作1.4×106 s和经过104次快速读取后,器件阻变性能变化率小于0.1%.在光照和电场共同作用下,S2-导电通道的形成与破坏和FTO/CAS QDs界面肖特基势垒高度的调制是FTO/CAS QDs/Au在高阻态与低阻态之间转变的原因.  相似文献   

11.
Quantum dots (QDs) or semiconductor nanocrystals have been receiving great interest in the last few years. In this paper, L-cysteine-coated CdSe/CdS core-shell QDs (λem = 585 nm) have been prepared, which have excellent water-solubility. The full width at half maximum (FWHM) of the photoluminescence of these nanocrystals is very narrow (about 30 nm), and the quantum yield (QY) is 15% relative to Rhodamine 6G in ethanol (QY = 95%). With excess free L-cysteine in the solution, the fluorescence intensity of L-cysteine-coated CdSe/CdS QDs showed improved stability. It was found that the fluorescence of L-cysteine-capped CdSe/CdS QDs could be quenched only by copper (II) ions and was insensitive to other physiologically important cations, such as Ca2+, Mg2+, Zn2+, Al3+, Fe3+, Mn2+ and Ni2+ etc. Based on this finding, the quantitative analysis of Cu2+ with L-cysteine-capped CdSe/CdS QDs has been established. The linear range was from 1.0 × 10− 8 to 2.0 × 10− 7 mol L− 1 and the limit of detection (LOD) was 3.0 × 10− 9 mol L− 1 (S/N = 3). The proposed method has first been applied to the determination of Cu2+ in vegetable samples with recoveries of 99.6–105.8%.  相似文献   

12.
Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/(I − I0) with concentration of edaravone was linear in the range of (1.45–17.42) μg/mL (0.008–0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3σ/κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed.  相似文献   

13.
Two different stabilizing agents thioglycolic acid (TGA) and l-cysteine (l-Cys) capped CdSe QDs with the diameter of 2 nm were synthesized, large amounts of stabilizing agents connected to CdSe QDs surface through Cd–S bond. The interaction between chitosan and QDs had been investigated, respectively. The interaction lead to the remarkable enhancement of RRS, RNLS and the enchantments were in proportional to the concentration of chitosan in a certain range. Under the optimal conditions, compared with TGA–CdSe QDs, the interaction between l-Cys–CdSe QDs with chitosan owned more broad linear range 0.042–3.0 μg mL−1 and lower detect limits 1.2 ng mL−1. The influences of factors on the interaction between chitosan with QDs and some foreign substances were all examined, which showed that the methods had a good sensitivity and selectivity. Based on this, it is hoped to build a method for the determination of chitosan using CdSe QDs as probes. Through Fourier transform infrared spectroscopy (FTIR) transmission electron microscopy (TEM), it was speculated that CdSe QDs interacted with chitosan to form a network structure aggregates through electrostatic attraction and hydrophobic forces. The reasons for the enhancement of RRS intensity were assumed as follows: resonance enhanced Rayleigh scattering effect, increase of the molecular volume, and hydrophobic effect.  相似文献   

14.
CdTe quantum dots (QDs) were modified with thioglycolic acid (TGA) and synthesized in aqueous medium. The optimum fluorescence intensity was found to be at pH 6.24 with a CdTe QDs concentration of 4.96 × 10−7 mol L−1. The quenched fluorescence intensity of CdTe QDs is linearly proportional to V(V) concentration from 10 to 200 ng mL−1 with correlation coefficient R = 0.9985. The limit of detection for V(V) was 2.07 ng mL−1. The proposed method was successfully applied to the analysis of trace amounts of V(V) in water samples with recovery of 96.5–101.8%, and the results were in good agreement with those of electrothermal atomic absorption spectrometry.  相似文献   

15.
This research presents aqueous colloidal method to synthesize CdZnS/ZnS surface modified core/shell quantum dots (QDs) with capping agents 2-mercaptoacetic acid and 3-mercaptopropanoic acid. The QDs were characterized by the different analytical techniques. Using Plackett–Burman and Central composite designs, optimum conditions for the removal of Pb(II) from aqueous medium were developed: QDs (0.013 g) at pH 6.9, time of adsorption and desorption (20 min), temperature (61.1 °C) and dilution on 100 ppb standard solutions. Moreover, Freundlich models suggested that Pb(II) adsorption was favorable on the heterogeneous surface of QDs. The values of ΔG° and ΔH° (?59.26 KJ/mol.K) suggested the process was spontaneous and exothermic. The negative ΔS° (?0.16 KJ/mol.K) indicates that the Pb(II) chemisorb on QDs. While, system follows the pseudo-second order rate equation which indicates that rate limiting step involves chemical reaction and could be influenced by the intraparticle/pore diffusion of Pb(II) ions with QDs. By using atomic absorption spectrophotometer, developed method was tested for Pb(II) removal from tap and ground water samples taken from the different districts of Karachi City. The % recovery for Pb(II) was found to be 96.4 % (tap water) and 94.8 % (ground water) with LOD = 0.1 ng mL?1 and LOQ = 0.90 ng mL?1.  相似文献   

16.
A simple, cheap, sensitive and selective probe for determination of DNPH in wastewater using thioglycolic acid (TGA)‐coated CdTe QDs (TGA‐QDs) as fluorescence probe has been established, and the properties of CdTe QDs were characterized by TEM, FT‐IR, DLS, XRD and zeta potentials. CdTe QDs fluorescence is highly efficiently quenched after adding DNPH on account of electron transfer effect, and the fluorescence quenching behavior of CdTe QDs interaction with DNPH is static quenching process. A good linear relationship is observed between the relative fluorescence intensity (F0/F) and 0.06–10 ng mL?1 of DNPH. As compared with some of reported methods, LOD of this method for analysis of DNPH (0.23 ng mL?1) is the lowest. Masking agents of DDTC and NH4OH can eliminate the interference of Cu2+, Ag+ and Hg2+. Hence, DNPH can be selectively and accurately detected and the established method was successfully used for detecting DNPH in wastewater with acceptable recovery of 90.6–102%.  相似文献   

17.
A simple and effective ratiometric fluorescence sensor of CdTe QDs/GCNNs for on-site and rapid analysis of Cu2+ has been established by mixing physically CdTe QDs and graphite carbon nitride (GCNNs). Two emissions peaks of CdTe QDs at 572 nm and GCNNs at 436 nm are both excitated at 340 nm. Under a UV lamp, fluorescent of traffic yellow CdTe QDs is linearly quenched by Cu2+ (as the detection signal), while blue GCNNs remains unchanged (as the reference), resulting in a distinguishable color change gradually from pink yellow to blue. The limit of detection (LOD) of this new sensor for Cu2+ is as low as 0.47 ng mL−1 with 1.4 % RSD. The established method has been successfully applied to detection of Cu2+ in various drinks with satisfactory results. Moreover, a paper-based sensor, which has been prepared by soaking cellulose acetate membrane in CdTe QDs/GCNNs sensor solution, has a wide semiquantitative detection range for Cu2+ (0.01 ~ 5.0 μg mL−1). It has realized successfully on-site and rapid determination of Cu2+ in red wine without any pretreatment procedure and is of great promotion and application value in determination of Cu2+ in liquid samples.  相似文献   

18.
Gold nanorods (AuNRs) integrated with ZnCdHgSe near-infrared quantum dots (AuNRs-ZnCdHgSe QDs) were successfully synthesized and characterized by transmission electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. A glassy carbon electrode was decorated with the aforementioned AuNRs-ZnCdHgSe QDs nanocomposite, which provides a biocompatible interface for the subsequent immobilization of prostate specific antibody (anti-PSA). After being successively treated with glutaraldehyde vapor and bovine serum albumin solution, a photoelectrochemical immunosensing platform based on anti-PSA/AuNRs-ZnCdHgSe QDs/GCE was established. The photocurrent response of ZnCdHgSe QDs was tremendously improved by AuNRs due to the effect of resonance energy transfer which can be deduced from the dependence of the enhanced efficiency on the AuNRs with different length-to-diameter ratios and spectral absorption characteristics. A maximum photocurrent was obtained when the absorption spectrum of AuNRs matched well with the emission spectrum of ZnCdHgSe QDs. A photoelectrochemical immunosensor for prostate specific antigen (PSA) was achieved by monitoring the photocurrent variation. The photocurrent variation before and after being interacted with PSA solution exhibits a good linear relationship with the logarithm of its concentration (logcPSA) in the range from 1.0 pg mL−1 to 50.0 ng mL−1. The detection limit of this photoelectrochemical immunosensor is able to reach 0.1 pg mL−1 (S/N = 3). Determining PSA in clinical human serum was also demonstrated by using the developed anti-PSA(BSA)/AuNRs-ZnCdHgSe QDs/GCE electrode. The results were comparable with those obtained from an enzyme-linked immunosorbent assay method.  相似文献   

19.
Quantum dots (QDs) are preferred as high-resolution biological fluorescent probes because of their inherent optical properties compared with organic dyes. This intrinsic property of QDs has been made use of for sensitive detection of methylparathion (MP) at picogramme levels. The specificity of the assay was attributed to highly specific immunological reactions. Competitive binding between free MP and CdTe QD bioconjugated MP (MP-BSA-CdTe) with immobilized anti-MP IgY antibodies was monitored in a flow-injection system. The fluorescence intensity of MP-BSA-CdTe bioconjugate eluted from the column was found to be directly proportional to the free MP concentration. Hence, it was possible to detect MP in a linear range of 0.1–1 ng mL−1 with a regression coefficient R 2 = 0.9905. In this investigation, IgY proved advantageous over IgG class immunoglobulins in terms of yield, stability, cost effectiveness, and enhancement of assay sensitivity. The photo-absorption spectrum of bioconjugated CdTe QD (λ max = 310 nm) confirmed nano-biomolecular interactions. The results suggest the potential application of bioconjugation and nano-biomolecular interactions of QDs for biological labeling and target analyte detection with high sensitivity.  相似文献   

20.
The hydrogen abstraction reaction of 1,1,1,2-tetrafluoroethane (HFC-134a) by chlorine radical is investigated by theoretical calculations. Equilibrium geometries and harmonic vibrational frequencies of the reactants, transition state, and products are calculated using high-level ab initio methods. Rate constants of forward and backward reactions for the temperatures from 200 to 1000 K are calculated using classical transition state theory with Eckart tunneling correction, fitted in the expressions kf (T) = 1.19 × 10−23T3.93exp (−1110/T), and kb (T) = 8.86 × 10−24T3.32exp (−959/T) cm3 molecule−1 s−1 for forward and backward reactions, respectively, and are in reasonable agreement with the available experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号