首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
牡丹籽油中脂肪酸的组成分析   总被引:6,自引:0,他引:6  
用化学萃取法获得牡丹籽油,然后将样品进行皂化、甲酯化,以毛细管气相色谱-质谱联用法(GC-MS)测定牡丹籽油脂肪酸的组成,共鉴定出14种成分,其中主要成分为亚麻酸和亚油酸,其相对含量分别为57.931%和28.121%。  相似文献   

2.
采用超临界CO2萃取和正己烷提取的萝卜籽毛油为原料,依次按照水化脱胶、碱炼脱酸、吸附脱色和真空加热脱臭的工序对毛油进行精炼,并考察了各精炼阶段油脂的理化指标及脂肪酸组成变化情况。结果表明,各精炼阶段对萝卜籽油的相对密度、折光指数、碘值和皂化值没有显著影响,磷脂含量、酸值、过氧化值和色泽则变化显著。萝卜籽油脂肪酸组成与菜籽油相似,各精炼阶段组成均有变化,但是变化幅度都比较小,油脂中不饱和脂肪酸含量有所降低。精炼萝卜籽油清澈透明,酸值、过氧化值、水分及挥发物含量等指标均达到国家二级食用油的标准,其中油脂中的不饱和脂肪酸含量可达到85%,单不饱和脂肪酸含量可达到64%。  相似文献   

3.
采用气相色谱-质谱联用(GC-MS)方法测定了8种云南植物油脂肪酸含量并对其差异性进行了分析。植物油经甲酯化处理后,用GC-MS方法测定其脂肪酸含量。通过与标准样品保留时间比较和检索NIST标准谱库定性,峰面积归一化法定量。山茶油和辣木籽油含油酸(C18:1)较高,油酸含量分别为80.47%和71.90%;核桃油和假酸浆籽油含亚油酸(C_(18:2))较高,含量分别为60.75%和70.78%;香薷油和藿香籽油含α-亚麻酸(C_(18:3))较高,含量分别为47.13%和55.08%。橡胶树籽油中硬脂酸(C_(18:0))含量9.22%,油酸(C_(18:1))24.07%,亚油酸(C_(18:2))37.17%,α-亚麻酸(C18:3)19.72%,几种脂肪酸分布较为均匀。藿香籽油中不饱和脂肪酸(UFA)含量最高为93.75%。辣木籽油饱和脂肪酸(SFA)含量最高为23.29%;辣木籽油中花生酸(C_(20:0))、二十碳烯酸(C_(20:1))、榆树酸(C_(22:0))和木蜡酸(C_(24:0))含量分别为3.94%、2.73%、6.41%和1.10%,均远远高于其他7种植物油相对应的脂肪酸含量,可作为鉴定辣木籽油的重要依据。  相似文献   

4.
采用索氏提取法提取油松籽中的油脂,得油率为42.9%;对油脂进行甲酯化处理后用气相色谱-质谱联用仪检测其中的脂肪酸组成及含量。实验结果表明,油松籽油中含有7种脂肪酸,分别为肉豆蔻酸10.38%、硬脂酸3.05%、油酸21.98%、亚油酸(13,16-十八碳二烯酸)3.53%、亚油酸(9,12-十八碳二烯酸)38.38%、亚麻酸20.06%和二十碳三烯酸2.62%,其中饱和脂肪酸含量为13%,不饱和脂肪酸含量为87%。  相似文献   

5.
测定了5种不同种类动物油(鸡油、牛油、鸭油、羊油和猪油)的脂肪酸组成和含量,探讨了利用动物油脂肪酸的指标对不同种类的动物油进行分类和判别的可能性。采用气相色谱-质谱联用技术(GC-MS)对5种动物油脂肪酸的组成和含量进行测定,利用SPSS 19.0统计软件进行主成分分析、聚类分析和判别分析。对5种动物油的脂肪酸进行统计、分析和对比,得出动物油的主要组成为C16∶0,C18∶0,C18∶1c-9,C18∶2c-9,12和C14∶0,这5种脂肪酸在鸡油、牛油、鸭油、羊油和猪油中的总含量分别为92.1%,93.5%,93.5%,90.6%和95.6%。5种脂肪酸的不饱和度均小于1。主成分分析降维得到3个主成分,利用主成分分析数据,依次进行聚类分析和判别分析,建立了3个动物油典则判别函数,相关系数均大于0.995,对于鸡油、牛油、鸭油、羊油和猪油的初始分类正确率和交叉验证正确率均为100%。  相似文献   

6.
栾树种油中脂肪酸组成的气相色谱-质谱分析   总被引:13,自引:2,他引:11  
用乙醚抽提栾树种油,将样品皂化和甲酯化后,用毛细管质谱-色谱法(GC-MS)测定了栾树种油的脂肪酸组成,共鉴定出21种成分,其不饱和脂肪酸相对含量为88%,主要成分为二十碳烯酸和亚油酸,安们的相对含量分别为44.98%和39.75%。  相似文献   

7.
马尾松和湿地松松针挥发性成分的提取及GC-MS比较分析   总被引:1,自引:1,他引:1  
采用水蒸气蒸馏法提取马尾松和湿地松松针叶挥发油的油相部分,用乙醚萃取法提取蒸馏残液中的水溶性挥发性组分,利用气相色谱-质谱联用分析比较它们的化学成分。由于增加了水溶性部分的提取,马尾松和湿地松挥发油总的得油率提高到0.4709%和0.3452%,提高率分别达19.17%和24.62%。马尾松挥发油的油相成分和水溶性成分组成部分相同,但含量相差较大;而湿地松针叶精油的油相和水相部分成分组成差别较大;马尾松和湿地松相比较,针叶精油(油相部分)的主要化学成分大致相同,都是以单萜和倍半萜为主,但在含量上有较大差别。  相似文献   

8.
云南丽江野生香薷籽微量元素成分分析   总被引:4,自引:0,他引:4  
应用电感耦合氩等离子体原子发射光谱仪(ICP-AES),对采自云南丽江的野生香薷籽进行了微量元素成分分析,其结果为开发利用野生香薷籽提供了依据。  相似文献   

9.
选用脱碱木质素作为原料,以热裂解气质联用技术(Py-GC/MS)研究木质素在350~600℃下热解产物成分和含量,并利用Joback法、 Lijie法和Tahami法3种基团贡献法计算了生物油各组成成分的临界参数和动力学直径,对木质素热解油产物的分子动力学直径分布特性进行计算.结果显示,愈创木基结构、紫丁香基结构、苯酚类、邻苯二酚类和芳烃类等5种芳香族化合物是350~600℃下木质素热解生物油的主要组成成分,其中愈创木基结构化合物的平均峰面积百分比达到70.7%.随着反应温度从350提高到600℃,分子动力学直径在0.560~0.610 nm区间内的木质素热解油组分含量从14.6%增加至31.3%.木质素热解生物油主要产物的动力学直径在0.560~0.710nm,表明一些孔径尺寸在此范围内的分子筛如SSZ-20、 ZSM-5和Beta可作为木质素裂解制备高品质芳烃燃料的催化剂.  相似文献   

10.
战琨友  王超  徐坤  尹洪宗 《色谱》2008,26(6):692-696
用超临界CO2萃取生姜根茎中的姜油树脂,并用气相色谱-质谱联用技术对其进行了成分分析。从姜油树脂中分析出77种化合物,其中挥发油成分50种,主要是α-姜烯(22.29%)、 β-倍半水芹烯(8.58%)、α-法尼烯(3.93%)、 β-没药烯(3.87%)和α-姜黄烯(2.63%)等倍半萜类化合物;姜辣素成分27种,主要成分为6-姜酚(9.38%)、6-姜烯酚(7.59%)和分析过程中由姜酚类或姜烯酚类化合物受热分解而形成的姜油酮(9.24%)。在姜辣素成分中,6-异姜酚、(Z)-10-异姜烯酚和(E)-10-异姜烯酚3种化合物是新发现的未见报道的化合物。实验中对这3种新化合物进行了质谱裂解分析。  相似文献   

11.
Chu K  Xu W  Li H  Chen L  Zhang Y  Tang X 《Molecules (Basel, Switzerland)》2011,16(12):10029-10045
The supercritical fluid extraction (SFE) of Lepidium apetalum seed oil and its anti-oxidant activity were studied. The SFE process was optimized using response surface methodology (RSM) with a central composite design (CCD). Independent variables, namely operating pressure, temperature, time and flow rate were evaluated. The maximum extraction of Lepidium apetalum seed oil by SFE-CO? (about 36.3%) was obtained when SFE-CO? extraction was carried out under the optimal conditions of 30.0 MPa of pressure, 70 °C of temperature, 120 min of extraction time and 25.95 L/h of flow rate. GC-MS analysis showed the presence of four fatty acids in Lepidium apetalum seed oil, with a high content (91.0%) of unsaturated fatty acid. The anti-oxidant activity of the oil was assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay and 2,2'-azino- bis(3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt (ABTS) test. Lepidium apetalum seed oil possessed a notable concentration-dependent antioxidant activity, with IC?? values of 1.00 and 3.75 mg/mL, respectively.  相似文献   

12.
In order to investigate the composition of borage (Borago officinalis L.) seed oil, this research was performed under the field conditions at Shahriyar and Garmsar zones, Iran during the 2012 planting year. The oil yield of borage was 31.46% and 33.7% at Shahriyar and Garmsar zone, respectively, and nine and eight fatty acids were identified in the seed oil of borage at Shahriyar and Garmsar, respectively – palmitic, linoleic, stearic and γ-linolenic acids were dominant in the seed oil of borage from both zones. Unsaturated fatty acid content was more than the saturated fatty acids in both zones. The ratio of linoleic acid and α-linolenic acid in the borage cultivated at Shahriyar and Garmsar zones was 2.13 and 2.29. The fatty acid profile of Garmsar borage, oleic and oleic/linoleic acid ratio, increased. Locations with different ecological conditions resulted in changes in both seed oil content and fatty acid profile of borage.  相似文献   

13.
邢晓平  戴勇 《燃料化学学报》2011,39(12):907-911
以黄连木籽为原料,采用乙醇/异己烷两相不互溶溶剂对其进行萃取处理.考察了乙醇/异己烷体积比、萃取温度和萃取时间对萃取过程的影响.通过实验确定最佳的萃取条件为,黄连木仁粉50 g,乙醇异己烷总体积300 mL,乙醇/异己烷体积比为50∶50,萃取温度40℃,萃取时间30 min.在此条件下,黄连木籽油出油率达到99.5%...  相似文献   

14.
The oil yields, fatty acid compositions, and total protein contents of three varieties of Turkish poppy were investigated. Solvent extraction of yellow seed gave the highest oil yield (49.2%), while white seed (36.8%) and blue seed (33.6) showed considerably lower yields. Yellow seed was also subjected to mechanical extraction, yielding 32.3% oil. Solvent extraction of the oilcake from the press gave 17.6% additional oil. Fatty acid compositions of the oils were determined by GC/MS and major components were found to be linoleic (56.4-69.2%), oleic (16.1-19.4%), and palmitic (10.6-16.3%) depending on the color of the seeds. The values of proximate analysis, nutritional elements and heavy metals content were also reported for the most widely cultivated yellow seed.  相似文献   

15.
The lipid fraction of Opuntia ficus indica seeds was extracted and analyzed for its chemical and physical properties such as acid value, free fatty acid percentage (% FFA), iodine index, peroxide value, and saponification value as well as refractive index and density. The yield of seed oil was calculated as 11.75%. The acid and free fatty acid values indicated that the oil has a fairly low acidity. The triacylglycerols, fatty acids, sterols, and tocopherols were identified and their concentrations determined. The main TAGs were LLL (25.60%), OLL (21.53%), PLL (15.53%), and POL + SLL (12.73%). Linoleic acid (60.69%) was the dominant fatty acid, followed by oleic (21.42%) and palmitic (12.76%) acids, respectively. A high level of sterols making up 16.06 g/kg seed oil was present. The sterol marker, β-sitosterol, accounted for 71.60% of the total sterol content in the seed oil. Among the tocopherols present in the oil, γ-tocopherol (421.08 mg/kg) was the main constituent.  相似文献   

16.
The fatty acid composition of tobacco seed oil revealed that the oil is rich in unsaturated fatty acids, having linoleic acid (71.63%), oleic acid (13.46%) and palmitic acid (8.72%) as the most abundant unsaturated and saturated fatty acids respectively. So the tobacco oil was characterized as semi-drying type on the basis of fatty acid composition. The synthesis of alkyd resin was carried out by alcoholysis or monoglyceride process using an alkali refined tobacco seed oil, pentaerythritol, cis-1,2,3,6-tetrahydrophthalic anhydride along with lithium hydroxide as catalyst. The alkyd resin so prepared was found to be bright and of low color with high gloss. The drying and hardness properties and adhesion of the tobacco seed oil derived alkyd resin were also found a bit superior to those of other alkyd resins of the same oil length. In addition, the water and acid resistance of the said alkyd was also found comparable to the other alkyds.  相似文献   

17.
Physicochemical characteristics and fatty acid composition of Lasiococca comberi Haines (Euphorbiaceae), an endangered forest tree species, were determined for the first time. The oil, protein, crude fibre and carbohydrate contents in seeds were 41.5, 13.8, 22.2 and 11.6%, respectively. The refractive index, pH, specific gravity, saponification value, iodine value, peroxide value and p-anisidine value of seed oil were 1.4781, 6.4, 0.9, 178.4 mg KOH/g, 196 g I2/100 g of oil, 5.1 mEq O2/kg and 188.4, respectively. The predominant fatty acids were linolenic acid (65.3%), oleic acid (13.8%), linoleic acid (7.1%) and palmitic acid (5.3%). HPLC analysis revealed the presence of α-tocopherol (13.2 mg/100 g) and γ-tocopherol (6.3 mg/100 g) as the major tocopherols. The results indicated that L. comberi seed oil can be classified as drying oil having possible applications in different industries and as an important dietary source of omega-3 fatty acids.  相似文献   

18.
千金子油理化性质及其脂肪酸和挥发油成分分析   总被引:1,自引:0,他引:1  
对千金子油理化性质进行了系统的分析测试,并利用气相色谱法分析了千金子油脂肪酸及千金子挥发油,结果表明,千金子油中油酸含量最高占78.158%,其次是软脂酸、硬脂酸,分别为8.513%和5.523%;千金子挥发油中油酸、亚油酸和油酸-2-丙三醇酯含量较高,分别为17.747%,15.852%和13.196%.  相似文献   

19.
Essential fatty acids were extracted from Echium amoenum (Boraginaceae) seed oil via supercritical carbon dioxide and the results were compared with conventional Soxhlet method as the base case of 100% recovery. The response surface methodology was used to optimize the effective extraction parameters. The chemical composition of recovered oil was analyzed by polar and non-polar gas chromatograph-flame ionization detector columns. The experimental results indicated that echium seed contained 25 wt% oil and the maximum extraction oil recovery of 92% was obtained via supercritical CO(2) at optimal operating conditions (43°C, 280 bar, 1.5 mL/min, 25 min static time and 130 min dynamic time). At similar operating conditions, applying 2.5 and 5 mol% ethanol as a modifier enhanced the recovery to 96 and 112%, respectively. The results showed that supercritical fluid extraction is a viable technique for separation of constituents such as γ-linolenic acid (7-8%), palmitic acid (6-7%), stearic acid (3-4%), oleic acid (12-13%), linoleic acid (19-20%), α-linolenic acid (40-41%) and stearidonic acid (8-9%) from Boraginaceae.  相似文献   

20.
The fatty acid composition of the seed oil of 23 Stachys taxa was analysed by GC/MS. The main compounds were found to be linoleic (27.1-64.3%), oleic (20.25-48.1%), palmitic (4.3-9.1%), stearic (trace to 5.2%) and 6-octadecynoic (2.2-34.1%) acids. The latter compound could be used as a chemotaxonomic marker of the genus Stachys. A cluster analysis was performed for comparison and characterisation of the seed oil from Stachys species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号