首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrophilic interaction liquid chromatography (HILIC) is an alternative technique to ion pairing-reversed-phase liquid chromatography (IP-RPLC) and classical RPLC for separation of alkylimidazolium room-temperature ionic liquids (RTILs). Particularly, HILIC offers better retention and selectivity for short-chains RTILs imidazolium compounds. HILIC mechanisms were investigated by studying the influence of organic modifier content and salt concentration in the mobile phase. HILIC method was validated by quantifying 1-butyl-3-methylimidazolium cation (BMIM) degradation under gamma radiation at 2.5MGy. Development of separative reproducible analytical methods, including for low concentration, applicable to RTILs are today mandatory to improve RTILs chemistry.  相似文献   

2.
Hydrophilic interaction chromatography (HILIC) is becoming increasingly popular for separation of polar samples on polar columns in aqueous-organic mobile phases rich in organic solvents (usually ACN). Silica gel with decreased surface concentration of silanol groups, or with chemically bonded amino-, amido-, cyano-, carbamate-, diol-, polyol-, or zwitterionic sulfobetaine ligands are used as the stationary phases for HILIC separations, in addition to the original poly(2-sulphoethyl aspartamide) strong cation-exchange HILIC material. The type of the stationary and the composition of the mobile phase play important roles in the mixed-mode HILIC retention mechanism and can be flexibly tuned to suit specific separation problems. Because of excellent mobile phase compatibility and complementary selectivity to RP chromatography, HILIC is ideally suited for highly orthogonal 2-D LC-LC separations of complex samples containing polar compounds, such as peptides, proteins, oligosaccharides, drugs, metabolites and natural compounds. This review attempts to present an overview of the HILIC separation systems, possibilities for their characterization and emerging HILIC applications in 2-D off-line and on-line LC-LC separations of various samples, in combination with RP and other separation modes.  相似文献   

3.
In proteomics, nanoflow multidimensional chromatography is now the gold standard for the separation of complex mixtures of peptides as generated by in-solution digestion of whole-cell lysates. Ideally, the different stationary phases used in multidimensional chromatography should provide orthogonal separation characteristics. For this reason, the combination of strong cation exchange chromatography (SCX) and reversed-phase (RP) chromatography is the most widely used combination for the separation of peptides. Here, we review the potential of hydrophilic interaction liquid chromatography (HILIC) as a separation tool in the multidimensional separation of peptides in proteomics applications. Recent work has revealed that HILIC may provide an excellent alternative to SCX, possessing several advantages in the area of separation power and targeted analysis of protein post-translational modifications. Figure Artistic impression of the HILIC separation mechanism  相似文献   

4.
Guo Y  Yuan Q  Li R  Huang Y 《色谱》2012,30(3):232-238
亲水作用色谱(HILIC)是一种分离极性和亲水性化合物的液相色谱模式,其作为反相液相色谱(RPLC)的重要补充,近年来越来越受到各个领域的关注和重视。这不只是因为强极性化合物的分离问题在各个领域引起了重视,而且因为与RPLC比较,HILIC具有流动相组成黏度低、色谱柱渗透性好、与质谱联用的灵敏度高及反压较低等优势。本文简要概述了HILIC的发展历程、特点及保留机理,重点介绍了HILIC用于环境分析的最新进展,评述了HILIC及RPLC用于污染物分析的优缺点,并指出了HILIC用于环境分析的未来发展趋势。  相似文献   

5.
This study demonstrated the first application of hydrophilic interaction chromatography (HILIC) with evaporative light scattering detection (ELSD) for the analysis of beta-cyclodextrin in a peptide nasal formulation. The method utilized an Accucore? 150 Amide HILIC packing together with an isocratic mobile phase of 65% acetonitrile/35% water with a runtime of 10?minutes and easily separated alpha-, beta- and gamma-cyclodextrins. The method was validated with respects to accuracy, precision, reproducibility, stability, specificity and sensitivity. This method provided better sensitivity compared to other reversed phase HPLC methods and was easier to run than other techniques for the quantitation of cyclodextrins in pharmaceutical formulations.  相似文献   

6.
Many samples contain compounds with various numbers of two or more regular structural groups. Such "multidimensional" samples (according to the Giddings' notation) are best separated in orthogonal chromatographic systems with different selectivities for the individual repeat structural groups, described by separation factors. Correlations between the repeat group selectivities characterize the degree of orthogonality and suitability of chromatographic systems for two-dimensional (2D) separations of two-dimensional samples. The range of the structural units in that can be resolved in a given time can be predicted on the basis of a model describing the repeat group selectivity in the first- and second-dimension systems. Two-dimensional liquid chromatographic system combining reversed-phase (RP) mode in the first dimension and normal-phase (NP) mode in the second dimension were studied with respect to the possibilities of in-line fraction transfer between the two modes. Hydrophilic interaction liquid chromatography (HILIC) with an aminopropyl silica column (APS) is more resistant than classical non-aqueous NP systems against adsorbent desactivation with aqueous solvents transferred in the fractions from the first, RP dimension to the second dimension. Hence, HILIC is useful as a second-dimension separation system for comprehensive RP-NP LCxLC. A comprehensive 2D RP-NP HPLC method was developed for comprehensive 2D separation of ethylene oxide-propylene oxide (EO-PO) (co)oligomers. The first-dimension RP system employed a 120 min gradient of acetonitrile in water on a C18 microbore column at the flow-rate of 10 microL/min. In the second dimension, isocratic HILIC NP with ethanol-dichloromethane-water mobile phase on an aminopropyl silica column at 0.5 mL/min was used. Ten microliter fractions were transferred from the RP to the HILIC NP system at 1 min switching valve cycle frequency.  相似文献   

7.
Short‐chain carboxylic acids are relevant in pharmaceutical, food quality control, and biomedical analysis. In this study, 11 acids commonly found in drugs and in food products were selected. Wine was chosen as matrix for testing the method. The test compounds were used for comparing the selectivity of four 150 × 2.1 mm zwitterionic hydrophilic interaction LC (HILIC) columns (ZIC‐HILIC 5 μm, 200 Å, and 3.5 μm, 100 Å, ZIC‐pHILIC 5 μm, ZIC‐cHILIC 3 μm, 100 Å) while varying the conditions to optimize for low UV wavelength detection and achieve high sensitivity. Retention using potassium phosphate and ammonium carbonate as mobile‐phase components at pH 6.0, 7.5, and 8.5–8.9 was studied considering recent hypotheses on HILIC mechanism‐related with the Hofmeister series effect and ion hydration. An isocratic method with UV detection at 200 nm and mobile phase consisting of 75% acetonitrile and 10 mM potassium phosphate at pH 6.0 applied to a ZIC‐cHILIC column was found provisionally optimal and partially validated for the 11 analytes. Satisfactory results (R2 from 0.9940 to >0.9999), and recoveries from 93–106% for all analytes evidenced the method as suitable for wine analysis. To the best of our knowledge, no previous study has reported on the direct ZIC‐HILIC separation and UV detection of the acids considered here in wine.  相似文献   

8.
A hydrophilic interaction chromatographic (HILIC) system interfaced with atmospheric pressure ionization (API) sources and a tandem mass spectrometer (MS/MS) was developed for the simultaneous determination of nicotinic acid (NiAc) and its metabolites in dog plasma in support of a pharmacokinetic study. A silica column was adapted for separation of NiAc and its two metabolites, nicotinamide (NiNH2) and nicotinuric acid (NiUAc), under HILIC conditions. The influence of experimental factors such as the composition of mobile phase on ionization efficiency and chromatographic performance of all analytes was investigated. The feasibility of the proposed HILIC/MS/MS methods was explored by comparing the plasma levels of NiAc, NiNH2, and NiUAc in dog obtained by using either electrospray ionization or atmospheric pressure chemical ionization interfaces in positive ion mode. The methods were partially validated in terms of inter-day accuracy and precision, extraction recovery, benchtop and freeze/thaw stability. Further, the potential of ionization suppression resulting from endogenous components of the biological matrixes on the HILIC/API-MS/MS methods were investigated using the post-column infusion technique.  相似文献   

9.
A method combining hydrophilic interaction liquid chromatography (HILIC) with tandem mass spectrometry (MS/MS) was developed for the determination of polar organophosphorus pesticides (OPPs; acephate, methamidophos, monocrotophos, omethoate, oxydemeton-methyl, and vamidothion) in water samples. To extract the polar OPPs and minimize matrix effects from the water sample, an activated carbon cartridge was used for pretreatment. After pretreatment of the water sample, the eluate from the activated carbon cartridge was directly injected into the HILIC/MS/MS system. The OPPs were separated on an Atlantis HILIC silica column by isocratic elution with a mixture of acetonitrile, isopropanol, and ammonium formate buffer as a mobile phase, and they were detected by positive electrospray ionization MS/MS in the selected reaction monitoring mode. The method was validated at 0.05, 0.5, and 5 microg/L levels in water samples, and the recoveries of polar OPPs were between 76.4 and 98.6%. The limits of detection were between 0.13 and 1.0 pg on-column, and the limits of quantification were between 0.43 and 3.4 pg on-column. The method can be applied to the determination of trace amounts of OPPs in environmental water samples.  相似文献   

10.
Fingerprint analysis is considered one of the most powerful approaches to quality control in traditional Chinese medicines (TCMs). In this study, a binary chromatographic fingerprint analysis was developed using hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) to gain more chemical information about polar compounds and weakly polar compounds. This method was used to construct a chromatographic fingerprint of Ligusticum chuanxiong. The two chromatographic methods demonstrated good precision, reproducibility, and stability, with relative standard deviations of <2% for retention time and 7% for peak area for both HILIC and RPLC separations. Data from the analysis of 14 samples by HILIC and RPLC were processed with similarity analysis, with correlation coefficients and congruence coefficients. This binary fingerprint analysis, using two chromatographic modes, is a powerful tool for characterizing the quality of samples, and can be used for the comprehensive quality control of TCMs.  相似文献   

11.
12.
13.
Reversed-phase chromatography is the most common means of separation for small drug molecules. However, polar drugs may suffer from poor retention and peak shape in reversed-phase high-performance liquid chromatography (RP-HPLC). Hydrophilic interaction liquid chromatography (HILIC) provides a viable alternative to RP-HPLC and is an excellent way to separate polar compounds. This paper describes a HILIC/ESI-MS/MS assay for the determination of acyclovir from rat plasma, amniotic fluid, placental tissue, and fetal tissue. The isocratic separation utilizes an underivatized silica column with an acetonitrile/formate buffer mobile phase (80:20). The method is validated over a range of 50 ng/mL to 50 micro g/mL with % error and % relative standard deviation of <15% over 3 days. All samples are prepared by acetonitrile protein precipitation, which yields high recovery (>84% for acyclovir). This assay can be applied to the pharmacokinetic study of the placental transfer of acyclovir.  相似文献   

14.
There has been a significant increase of interest in polar compound separation by hydrophilic interaction liquid chromatography (HILIC), in which acetonitrile is mostly used as a weak eluent. Although replacing acetonitrile with alcohols as organic modifiers has been previously reported, the separation mechanism was poorly understood. In this paper we explored the separation mechanism through the method development for the analysis of the trace amounts of polar and basic hydrazines, which were genotoxic in nature. Separation parameters such as the type and concentration of alcohol, acid modifier, and buffer in mobile phase as well as the choice of stationary phase and column temperature were studied. The data indicated that both electrostatic and hydrophilic interactions contributed to the retention and separation of the hydrazines. The results presented here provide insight into the adjustment of the retention and separation of analytes in HILIC mode with alcohol as a weak eluent. The optimized HILIC method coupled with chemiluminescent nitrogen detection (CLND) is simple and sensitive (reporting limit at 0.02%) and was applied to simultaneous analysis of hydrazine and 1,1-dimethylhydrazine in a pharmaceutical intermediate.  相似文献   

15.
亲水作用色谱法测定胡芦巴中的胡芦巴碱   总被引:1,自引:0,他引:1  
卓荣杰  王莉  王龙星  肖红斌  蔡少青 《色谱》2010,28(4):379-382
建立了亲水作用色谱法(HILIC)测定胡芦巴药材中胡芦巴碱含量的方法。采用Waters Atlantis HILIC Silica色谱柱(150 mm×2.1 mm, 3 μm),以乙腈-乙酸铵溶液(pH 4.4)(体积比为70:30)为流动相,流速0.4 mL/min,检测波长265 nm。胡芦巴碱的线性范围为2.50~100 mg/L (r=0.9996);两个加标水平的平均加样回收率为102%,相对标准偏差(RSD)分别为4.17%和2.28%(n=3)。结果表明所建方法分离效果好、快速简易,可以弥补中国药典中离子对色谱法(IPLC)平衡时间过长的缺陷,适用于胡芦巴药材中强极性胡芦巴碱的测定,为胡芦巴的质量控制提供了有效的方法。  相似文献   

16.
A new isocratic separation method was developed for separation of phospholipid (PL) classes based on a silica hydrophilic interaction liquid chromatography (HILIC) column with electrospray ionization (ESI) mass spectrometric detection. Although HILIC is typically used for polar compounds, also amphiphilic molecules like phospholipids can be separated very well. Compared to normal-phase (NP) chromatography, which is usually used for PL class separation, HILIC has the advantage to use on-line ESI-MS detection because its eluents are ESI compatible. Furthermore, this HILIC method is isocratic and hence less time consuming than most (gradient) NP HPLC methods. A chromatographic baseline separation of a standard mixture containing phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), sphingomyelin (SM) and lysophosphatidylcholine (LPC) was achieved within a total run time of 17 min using a mobile phase consisting of acetonitrile, methanol and ammonium acetate 10 mM. The new method was subsequently tested on phospholipid fractions of a body fluid (human blood plasma) and a tissue extract (swine brain) whereby it achieved nearly the same baseline separation of the PL classes. The detected classes in both cases were PE, PC, SM and LPC.  相似文献   

17.
Streptomycin (STR) and dihydrostreptomycin (DHSTR) are two of the most common aminoglycoside antibiotics used in veterinary medicine. The physicochemical properties of both substances, make their determination challenging. In the present study the development of methods based on ion-pair chromatography (IPC) and on hydrophilic interaction chromatography (HILIC), for the determination of the above mentioned aminoglycosides in the range of 100–1000 μg L−1 is described. The two methods were validated according to EU requirements for residues in food. The recoveries for the IPC method were 69.3% and 56.5% of STR and DHSTR, respectively, and for HILIC method 85.5% and 72.3%, respectively. The intra- and inter-day precision, studied at 100, 200 and 300 μg kg−1 levels in milk samples, gave %RSD ≤ 13 for both methods. LOQs for the HILIC method were 14 μg kg−1 for both analytes and for the IPC method were 109 and 31 μg kg−1, for STR and DHSTR, respectively. The sensitivity of the HILIC method is 80 and 210 times greater than that of the ICP method, for STR and DHSTR, respectively.  相似文献   

18.
We have developed a novel system for coupling reverse-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) online in a micro-flow scheme. In this approach, the inherent solvent incompatibility between RP and HILIC is overcome through the use of constant-pressure online solvent mixing, which allows our system to perform efficient separations of both hydrophilic and hydrophobic compounds for mass spectrometry-based proteomics applications. When analyzing the tryptic digests of bovine serum albumin, ribonuclease B, and horseradish peroxidase, we observed near-identical coverage of peptides and glycopeptides when using online RP-HILIC—with only a single sample injection event—as we did from two separate RP and HILIC analyses. The coupled system was also capable of concurrently characterizing the peptide and glycan portions of deglycosylated glycoproteins from one injection event, as confirmed, for example, through our detection of 23 novel glycans from turkey ovalbumin. Finally, we validated the applicability of using RP-HILIC for the analysis of highly complex biological samples (mouse chondrocyte lysate, deglycosylated human serum). The enhanced coverage and efficiency of online RP-HILIC makes it a viable technique for the comprehensive separation of components displaying dramatically different hydrophobicities, such as peptides, glycopeptides, and glycans.  相似文献   

19.
This article is aimed at providing a review of the progress made over the past decade in the preparation of polar monoliths for hydrophilic interaction LC (HILIC)/capillary electrochromatography (HI-CEC) and in the design of immuno-monoliths for immunoaffinity chromatography that are based on some of the polar monolith precursors used in HILIC/HI-CEC. In addition, this review article discusses some of the applications of polar monoliths by HILIC and HI-CEC, and the applications of immuno-monoliths. This article is by no means an exhaustive review of the literature; it is rather a survey of the recent progress made in the field with 83 references published in the past decade on the topics of HILIC and immunoaffinity chromatography monoliths.  相似文献   

20.
A method was developed for the simultaneous determination of six toxic alkaloids (aconitine, hypaconitine, gelsemine, raceanisodamine, strychnine, brucine) in blood and urine by hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray tandem mass spectrometry. Ephedrine was selected as the internal standard. Samples were extracted and cleaned up by solid-phase extraction (SPE) using Oasis MCX cartridges. Separation parameters such as organic modifier, buffer pH, and concentration of buffer salt were investigated. Gradient separation and analysis were achieved for six alkaloids on a 3-μm Atlantis HILIC column using a mobile phase consisting of 30 mM ammonium formate and acetonitrile at pH 3. Two multiple reaction monitoring (MRM) transitions for each substance were monitored to provide sufficient identification of alkaloid. The retention mechanisms were explored in the method development. Validation included assessment of linearity, limit of quantification, accuracy, and precision. Bias was less than 15.1% and precision was better than 8.3% for both blood and urine samples. A total of 54 clinical samples were examined by this validated method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号