首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Binuclear manganese complexes Mn2(III/IV)(dtsalpn)2DCBI, 1, Mn2(III/III)(dtsalpn)2HDCBI, 2, containing the ligand dicarboxyimidazole (DCBI) have been prepared in order to address the issue of imidazole bridged and ferromagnetically coupled Mn sites in high oxidation states of the OEC in Photosystem II (PS II). Temperature dependent magnetic susceptibility studies of 1 indicates that the interaction between the two Mn(III)/Mn(IV) ions is ferromagnetic (J = +1.4 cm(-1)). Variable temperature EPR spectra of 1 shows that a g = 2 multiline is as an excited state signal corresponding to S = 1/2.  相似文献   

2.
Two mixed-valence Mn(III)Mn(II) complexes and a homo-valence Mn(II) trinuclear manganese complex of stoichiometry Mn(III)Mn(II)Mn(III)(5-Cl-Hsaladhp)(2)(AcO)(4)(MeOH)(2).4CH(3)OH (1a), Mn(III)Mn(II)Mn(III) (Hsaladhp)(2)(AcO)(2)(5-Cl-Sal)(2)(thf)(2) (3a) and Mn(II)Mn(II)Mn(II) (AcO)(6)(pybim)(2) (1b) where H(3)saladhp is a tridentate Schiff base ligand and pybim a neutral bidentate donor ligand, have been structurally characterized by using X-ray crystallography. The structurally characterized mixed-valence complexes have strictly 180 degrees Mn(III)-Mn(II)-Mn(III) angles as required by crystallographic inversion symmetry. The complexes are valence trapped with two terminal Mn(III) ions showing Jahn-Teller distortion along the acetate or salicylate-Mn(III)-X axis. The Mn.Mn separation is 3.511 ? and 3.507 ? respectively. The mixed-valence complexes have S = (3)/(2) ground state and the homovalence complex S = (5)/(2), with small antiferromagnetic exchange J couplings, -5.6 and -1.8 cm(-1), respectively, while the powder ESR spectra at 4 K show a broad low field signal with g approximately 4.3 for Mn(III)Mn(II)Mn(III) and a broad temperature-dependent signal at g = 2 for Mn(II)Mn(II)Mn(II). Crystal data for 1a: [C(36)H(60)O(20)N(2)Cl(2)Mn(3)], triclinic, space group P&onemacr;, a = 9.272(7) ?, b = 11.046(8) ?, c = 12.635(9) ?, alpha = 76.78(2) degrees, beta = 81.84(2) degrees, gamma = 85.90(2) degrees, Z = 1. Crystal data for 3a: [C(48)H(56)O(18)N(2)Cl(2)Mn(3)], monoclinic, space group P2(1)/n, a = 8.776(3) ?, b = 22.182(7) ?, c = 13.575(4) ?, beta = 94.44(1) degrees, Z = 2. Crystal data for 1b: [C(36)H(36)O(12)N(6)Mn(3)], triclinic, space group P&onemacr;, a = 13.345(6) ?, b = 8.514(4) ?, c = 9.494(4) ?, alpha = 75.48(1) degrees, beta = 75.83(1) degrees, gamma = 76.42(1) degrees, Z = 1.  相似文献   

3.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

4.
The synthesis, X-ray crystallography, magnetic properties, and high-field electron paramagnetic resonance (HFEPR) of a new heptanuclear manganese complex [Mn(7)(heamp)(6)](ClO(4))(2)·4CH(2)Cl(2)·H(2)O (complex 2), in which heampH(3) is 2-[N,N-di(2-hydroxyethyl)aminomethyl]phenol (compound 1), is reported. Complex 2 has a hexagonal, disk-shaped topology and contains six Mn(III) ions and a central Mn(II) ion. It crystallizes in the monoclinic space group P2(1)/c with two molecular orientations. Consideration of the cluster topology, together with variable-temperature and variable-field DC magnetic susceptibility data, suggest that complex 2 exists in a half-integer, S = (19)/(2) ± 1 spin ground state, with appreciable uniaxial zero-field splitting (D = -0.16 cm(-1)). AC magnetic susceptibility measurements clearly show out-of-phase signals, which are frequency- and temperature-dependent, indicating slow magnetization relaxation behavior. An analysis of the relaxation data employing the Arrhenius formula yielded an effective relaxation barrier of 12.9 cm(-1). Simulations of HFEPR studies agree with the assignment of an S ≈ (19)/(2) spin ground state, with g = 1.96, D = -4.71 GHz (-0.16 cm(-1)), and a longitudinal fourth-order zero-field splitting parameter B(4)(0) = -2.7 × 10(-4) GHz (-9.0 × 10(-6) cm(-1)).  相似文献   

5.
The initial employment of 2-(hydroxymethyl)pyridine for the synthesis of Mn/Ln (Ln = lanthanide) and Mn/Y clusters, in the absence of an ancillary organic ligand, has afforded a family of tetranuclear [Mn(III)(2)M(III)(2)(OH)(2)(NO(3))(4)(hmp)(4)(H(2)O)(4)](NO(3))(2) (M = Dy, 1; Tb, 2; Gd, 3; Y; 4) anionic compounds. 1-4 possess a planar butterfly (or rhombus) core and are rare examples of carboxylate-free Mn/Ln and Mn/Y clusters. Variable-temperature dc and ac studies established that 1 and 2, which contain highly anisotropic Ln(III) atoms, exhibit slow relaxation of their magnetization vector. Fitting of the obtained magnetization (M) versus field (H) and temperature (T) data for 3 by matrix diagonalization and including only axial anisotropy (zero-field splitting, ZFS) showed the ground state to be S = 3. Complex 4 has an S = 0 ground state. Fitting of the magnetic susceptibility data collected in the 5-300 K range for 3 and 4 to the appropriate van Vleck equations revealed, as expected, extremely weak antiferromagnetic interactions between the paramagnetic ions; for 3, J(1) = -0.16(2) cm(-1) and J(2) = -0.12(1) cm(-1) for the Mn(III)···Mn(III) and Mn(III)···Gd(III) interactions, respectively. The S = 3 ground state of 3 has been rationalized on the basis of the spin frustration pattern in the molecule. For 4, J = -0.75(3) cm(-1) for the Mn(III)···Mn(III) interaction. Spin frustration effects in 3 have been quantitatively analyzed for all possible combinations of sign of J(1) and J(2).  相似文献   

6.
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) dinuclear cations, [Cr(III)L(ox)(μ-ox)M(II)L'(H(2)O)(2)](+)[M = Co, L = bpy, and L' = Me(2)phen (1); M = Mn and L = L' = phen (2)]. These oxalato-bridged Cr(III)M(II) dinuclear cationic entities of 1 and 2 result from the coordination of a [Cr(III)L(ox)(2)](-) unit through one of its two oxalato groups toward a [M(II)L'(H(2)O)(2)](2+) moiety with either a trans- (M = Co) or a cis-diaqua (M = Mn) configuration. The two distinct Cr(III) ions in 1 and 2 adopt a similar trigonally compressed octahedral geometry, while the high-spin M(II) ions exhibit an axially (M = Co) or trigonally compressed (M = Mn) octahedral geometry in 1 and 2, respectively. Variable temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 and 2 reveal the presence of weak intramolecular ferromagnetic interactions between the Cr(III) (S(Cr) = 3/2) ion and the high-spin Co(II) (S(Co) = 3/2) or Mn(II) (S(Mn) = 5/2) ions across the oxalato bridge within the Cr(III)M(II) dinuclear cationic entities (M = Co and Mn) [J = +2.2 (1) and +1.2 cm(-1) (2); H = -JS(Cr)·S(M)]. Density functional electronic structure calculations for 1 and 2 support the occurrence of S = 3 Cr(III)Co(II) and S = 4 Cr(III)Mn(II) ground spin states, respectively. A simple molecular orbital analysis of the electron exchange mechanism suggests a subtle competition between individual ferro- and antiferromagnetic contributions through the σ- and/or π-type pathways of the oxalato bridge, mainly involving the d(yz)(Cr)/d(xy)(M), d(xz)(Cr)/d(xy)(M), d(x(2)-y(2))(Cr)/d(xy)(M), d(yz)(Cr)/d(xz)(M), and d(xz)(Cr)/d(yz)(M) pairs of orthogonal magnetic orbitals and the d(x(2)-y(2))(Cr)/d(x(2)-y(2))(M), d(xz)(Cr)/d(xz)(M), and d(yz)(Cr)/d(yz)(M) pairs of nonorthogonal magnetic orbitals, which would be ultimately responsible for the relative magnitude of the overall ferromagnetic coupling in 1 and 2.  相似文献   

7.
A mixed-valence Mn(III)-Mn(II)-Mn(III) trinuclear complex of stoichiometry MnIIIMnIIMnIII(Hsaladhp)2(Sal)4.2CH3CN (1), where H3saladhp is a tridentate Schiff-base ligand, has been structurally characterized with X-ray crystallography. The Mn(III)Mn(II)Mn(III) angles are strictly 180 degrees as required by crystallographic inversion symmetry. The complex is valence-trapped with two terminal Mn(III) ions in a distorted square pyramidal geometry. The Mn(III)...Mn(II) separation is 3.495 A. The trinuclear complex shows small antiferromagnetic exchange J coupling. The magnetic parameters obtained from the fitting procedure in the temperature range 10-300 K are J1 = -5.7 cm-1, g = 2.02, zJ = -0.19 cm-1, and R = 0.004. The EPR spectrum was obtained at 4 K in CHCl3 and in tetrahydrofuran glasses. The low-field EPR signal is a superposition of two signals, one centered around g = 3.6 and the other, for which hyperfine structure is observed, centered around g = 4.1 indicating an S = 3/2 state. In addition, there is a 19-line signal at g = 2.0. The multiline signal compares well with that observed for the S2 or S0* states of the oxygen-evolving complex. 1H NMR data reveal that the trinuclear compound keeps its integrity into the CHCl3 solution. Crystal data for complex 1: [C54H52N4O18Mn3], M = 1209.82, triclinic, space group P1, a = 10.367(6) A, b = 11.369(6) A, c = 13.967(8) A; alpha = 112.56(1) degree, beta = 93.42(2) degrees, gamma = 115.43(1) degree, Z = 1.  相似文献   

8.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

9.
Reactions between 2,6-diformyl-4-methylphenol (DFMF) and tris(hydroxymethyl) aminomethane (THMAM = H(3)L2) in the presence of copper(II) salts, CuX(2) (X = CH(3)CO(2)(-), BF(4)(-), ClO(4)(-), Cl(-), NO(3)(-)) and Ni(CH(3)CO(2))(2) or Ni(ClO(4))(2)/NaC(6)H(5)CO(2), sodium azide (NaN(3)), and triethylamine (TEA), in one pot self-assemble giving a coordination polymer consisting of repeating pentanuclear copper(II) clusters {[Cu(2)(H(5)L(2-))(μ-N(3))](2)[Cu(N(3))(4)]·2CH(3)OH}(n) (1) and hexanuclear Ni(II) complexes [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(CH(3)CO(2))(2)]·6C(3)H(7)NO·C(2)H(5)OH (2) and [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(C(6)H(5)CO(2))(2)]·3C(3)H(7)NO·3H(2)O·CH(3)OH (3). In 1, H(5)L(2-) and in 2 and 3 H(3)L1(-) and HL2(2-) represent doubly deprotonated, singly deprotonated, and doubly deprotonated Schiff-base ligands H(7)L and H(4)L1 and a tripodal ligand H(3)L2, respectively. 1 has a novel double-stranded ladder-like structure in which [Cu(N(3))(4)](2-) anions link single chains comprised of dinuclear cationic subunits [Cu(2)(H(5)L(2-))(μ-N(3))](+), forming a 3D structure of interconnected ladders through H bonding. Nickel(II) clusters 2 and 3 have very similar neutral hexanuclear cores in which six nickel(II) ions are bonded to two H(4)L1, two H(3)L2, four μ-azido, and two μ-CH(3)CO(2)(-)/μ-C(6)H(5)CO(2)(-) ligands. In each structure two terminal dinickel (Ni(2)) units are connected to the central dinickel unit through four doubly bridging end-on (EO) μ-azido and four triply bridging μ(3)-methoxy bridges organizing into hexanuclear units. In each terminal dinuclear unit two nickel centers are bridged through one μ-phenolate oxygen from H(3)L1(-), one μ(3)-methoxy oxygen from HL2(2-), and one μ-CH(3)CO(2)(-) (2)/μ-C(6)H(5)CO(2)(-) (3) ion. Bulk magnetization measurements on 1 show moderately strong antiferromagnetic coupling within the [Cu(2)] building block (J(1) = -113.5 cm(-1)). Bulk magnetization measurements on 2 and 3 demonstrate that the magnetic interactions are completely dominated by ferromagnetic coupling occurring between Ni(II) ions for all bridges with coupling constants (J(1), J(2), and J(3)) ranging from 2.10 to 14.56 cm(-1) (in the ? = -J(1)(?(1)?(2)) - J(1)(?(2)?(3)) - J(2)(?(3)?(4)) - J(1)(?(4)?(5)) - J(1)(?(5)?(6)) - J(2)(?(1)?(6)) - J(3)(?(2)?(6)) - J(3)(?(2)?(5)) - J(3)(?(3)?(5)) convention).  相似文献   

10.
铂电极上醋酸-醋酐溶液中Mn(III)/Mn(II)电对研究   总被引:2,自引:0,他引:2  
平衡电极电势实验确定了25 ℃, 1.5 mol•L-1醋酸钾+醋酸-醋酐(3:1体积比)溶液中Mn(III)/Mn(II)的条件电极电势为0.719 V(vs SCE);采用电势扫描和旋转圆盘电极技术研究了醋酸-醋酐溶液中铂电极上Mn(III)/Mn(II)电对的阳极氧化动力学. 结果表明:Mn(II)阳极氧化成Mn(III)的电极反应控制步骤属电荷传递过程, 阳极传递系数β=0.347,交换电流密度i0=5.84×10-6 A•cm-2,阳极标准反应速率常数ka=1.35×10-8 m•s-1, Mn(II)和OAc-的反应级数均为一级.  相似文献   

11.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

12.
Chen C  Huang D  Zhang X  Chen F  Zhu H  Liu Q  Zhang C  Liao D  Li L  Sun L 《Inorganic chemistry》2003,42(11):3540-3548
A reaction system consisting of terephthalic acid, NaOH, inorganic Mn(II) or Mn(III) salt, and salicylidene alkylimine resulted in dinuclear manganese complexes (salpn)(2)Mn(2)(mu-phth)(CH(3)OH)(2) (1, salpn = N,N'-1,3-propylene-bis(salicylideneiminato); phth = terephthalate dianion), (salen)(2)Mn(2)(mu-phth)(CH(3)OH)(2) (2, salen = N,N'-ethylene-bis(salicylideneiminato)), (salen)(2)Mn(2)(mu-phth)(CH(3)OH)(H(2)O) (3), and (salen)(2)Mn(2)(mu-phth) (4), while the absence of NaOH in the reaction led to a mononuclear Mn complex (salph)Mn(CH(3)OH)(NO(3)) (5, salph = N,N'-1,2-phenylene-bis(salicylideneiminato)). In addition, a trinuclear mixed metal complex H[Mn(2)Na(salpn)(2)(mu-OAc)(2)(H(2)O)(2)](OAc)(2) (6) was obtained from the reaction system by using maleic acid instead of terephthalic acid. Five-coordinate Mn ions were found in 4 giving rise to an intermolecular interaction and constructing a one-dimensional linear structure. Antiferromagnetic exchange interactions were observed for 1-3, and a total ferromagnetic exchange of 4 was considered to stem from intermolecular magnetic coupling. (1)H NMR signals of phenolate ring and alkylene (or phenylene) backbone of the diamine are similar to those reported in the literature, and the phth protons are at -2.3 to -10.1 ppm. Studies on structure, bond valence sum analysis, and magnetic properties indicate the oxidation states of the Mn ions in 6 to be +3, which are also indicated by ESR spectra in dual mode. Ferromagnetic exchange interaction between the Mn(III) sites was observed with J = 1.74 cm(-1). A quasireversible redox pair at -0.29V/-0.12V has been assigned to the redox of Mn(2)(III)/Mn(III)Mn(II), implying the intactness of the complex backbone in solution.  相似文献   

13.
Hexacyanoferrate(III) reacts with [FeII(meso)(CH3CN)2](ClO4)2.2CH3CN (meso=5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) in acetonitrile/water mixture producing the title complex, where three [Fe(meso)]2+ units are connected by two [Fe(CN)6](3-) anions. Molecular modeling (MM+) shows a fairly linear molecule and M?ssbauer data are consistent with two terminal pentacoordinated low spin iron(II)-meso units linked to one hexacoordinated low spin iron(II)-meso through two hexacoordinated low spin iron(III) units. Spectroscopic characterization showed a typical mixed-valence charge transfer band and the degree of electron coupling was calculated to be H(AB)=678 cm(-1). Magnetic properties exhibited an antiferromagnetic exchange interaction between the iron(III) ions with a coupling constant J= -44 cm(-1).  相似文献   

14.
The ligating properties of the 24-membered macrocyclic dinucleating hexaazadithiophenolate ligand (L(Me))2- towards the transition metal ions Cr(II), Mn(II), Fe(II), Co(II), Ni(II) and Zn(II) have been examined. It is demonstrated that this ligand forms an isostructural series of bioctahedral [(L(Me))M(II)2(OAc)]+ complexes with Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5) and Zn(II) (6). The reaction of (L(Me))2- with two equivalents of CrCl2 and NaOAc followed by air-oxidation produced the complex [(L(Me))Cr(III)H2(OAc)]2+ (1), which is the first example for a mononuclear complex of (L(Me))2-. Complexes 2-6 contain a central N3M(II)(mu-SR)2(mu-OAc)M(II)N3 core with an exogenous acetate bridge. The Cr(III) ion in is bonded to three N and two S atoms of (L(Me))2- and an O atom of a monodentate acetate coligand. In 2-6 there is a consistent decrease in the deviations of the bond angles from the ideal octahedral values such that the coordination polyhedra in the dinickel complex 5 are more regular than in the dimanganese compound 2. The temperature dependent magnetic susceptibility measurements reveal the magnetic exchange interactions in the [(L(Me))M(II)2(OAc)]+ cations to be relatively weak. Intramolecular antiferromagnetic exchange interactions are present in the Mn(II)2, Fe(II)2 and Co(II)2 complexes where J = -5.1, -10.6 and approximately -2.0 cm(-1) (H = -2JS1S2). In contrast, in the dinickel complex 5 a ferromagnetic exchange interaction is present with J = +6.4 cm(-1). An explanation for this difference is qualitatively discussed in terms of the bonding differences.  相似文献   

15.
A series of heterobimetallic complexes of the type [Fe(III)M(II)L(&mgr;-OAc)(OAc)(H(2)O)](ClO(4)).nH(2)O (2-5) and [{Fe(III)Co(III)L(&mgr;-OAc)(OAc)}(2)(&mgr;-O)](ClO(4))(2).3H(2)O (6) where H(2)L is a tetraaminodiphenol macrocyclic ligand and M(II) = Zn(2), Ni(3), Co(4), and Mn(5) have been synthesized and characterized. The (1)H NMR spectrum of 6 exhibits all the resonances between 1 and 12 ppm. The IR and UV-vis spectra of 2-5 indicate that in all the cases the metal ions have similar coordination environments. A disordered crystal structure determined for 3 reveals the presence of a (&mgr;-acetate)bis(&mgr;-phenoxide)-Ni(II)Fe(III) core, in which the two metal ions have 6-fold coordination geometry and each have two amino nitrogens and two phenolate oxygens as the in-plane donors; aside from the axial bridging acetate, the sixth coordination site of nickel(II) is occupied by the unidentate acetate and that of iron(III) by a water molecule. The crystal structure determination of 6 shows that the two heterobinuclear Co(III)Fe(III) units are bound by an Fe-O-Fe linkage. 6 crystallizes in the orthorhombic space group Ibca with a = 17.577(4) ?, b = 27.282(7) ?, c = 28.647(6) ?, and Z = 8. The two iron(III) centers in 6 are strongly antiferromagnetically coupled, J = -100 cm(-1) (H = -2JS(1).S(2)), whereas the other two S(1) = S(2) = (5)/(2) systems, viz. [Fe(2)(III)(HL)(2)(&mgr;-OH)(2)](ClO(4))(2) (1) and the Fe(III)Mn(II) complex (5), exhibit weak antiferromagnetic exchange coupling with J = -4.5 cm(-1) (1) and -1.8 cm(-1) (5). The Fe(III)Ni(II) (3) and Fe(III)Co(II) (4) systems, however, exhibit weak ferromagnetic behavior with J = 1.7 cm(-1) (3) and 4.2 cm(-1) (4). The iron(III) center in 2-5 exhibits quasi-reversible redox behavior between -0.44 and -0.48 V vs Ag/AgCl associated with reduction to iron(II). The oxidation of cobalt(II) in 4 occurs quasi-reversibly at 0.74 V, while both nickel(II) and manganese(II) in 3 and 5 undergo irreversible oxidation at 0.85 V. The electrochemical reduction of 6 leads to the generation of 4.  相似文献   

16.
The new heterodinuclear mixed valence complex [Fe(III)Mn(II)(BPBPMP)(OAc)(2)]ClO(4) (1) with the unsymmetrical N(5)O(2) donor ligand 2-bis[((2-pyridylmethyl)-aminomethyl)-6-((2-hydroxybenzyl)(2-pyridylmethyl))-aminomethyl]-4-methylphenol (H(2)BPBPMP) has been synthesized and characterized. Compound 1 crystallizes in the monoclinic system, space group P2(1)/c, and has an Fe(III)Mn(II)(mu-phenoxo)-bis(mu-carboxylato) core. Two quasireversible electron transfers at -870 and +440 mV versus Fc/Fc(+) corresponding to the Fe(II)Mn(II)/Fe(III)Mn(II) and Fe(III)Mn(II)/Fe(III)Mn(III) couples, respectively, appear in the cyclic voltammogram. The dinuclear Fe(III)Mn(II) center has weakly antiferromagnetic coupling with J = -6.8 cm(-1) and g = 1.93. The (57)Fe M?ssbauer spectrum exhibits a single doublet, delta = 0.48 mm s(-1) and DeltaE(Q) = 1.04 mm s(-1) for the high spin Fe(III) ion. Phosphatase-like activity at pH 6.7 with the substrate 2,4-bis(dinitrophenyl)phosphate reveals saturation kinetics with the following Michaelis-Menten constants: K(m) = 2.103 mM, V(max) = 1.803 x 10(-5) mM s(-1), and k(cat) = 4.51 x 10(-4) s(-1).  相似文献   

17.
Four rhenium(IV)-M(II) bimetallic complexes of formula [ReCl(4)(mu-ox)M(dmphen)(2)].CH(3)CN with M = Mn (1), Fe (2), Co (3), and Ni (4) (ox = oxalate anion, dmphen = 2,9-dimethyl-1,10-phenanthroline) have been synthesized and the crystal structures of 1 and 3 determined by single-crystal X-ray diffraction. 1 and 3 are isostructural and crystallize in the monoclinic system, space group P2(1)/c, with a = 16.008(4) A, b = 12.729(2) A, c = 18.909(5) A, beta = 112.70(2) degrees, and Z = 4 for 1 and a = 15.998(4) A, b = 12.665(2) A, c = 18.693(5) A, beta = 112.33(2) degrees, and Z = 4, for 3. The structure of 1 and 3 is made up of neutral [ReCl(4)(mu-ox)M(dmphen)(2)] bimetallic units (M = Mn (1), Co (3)) and acetonitrile molecules of crystallization. M(II) and Re(IV) metal ions exhibit distorted octahedral coordination geometries being bridged by a bis(bidentate) oxalato ligand. The magnetic behavior of 1-4 has been investigated over the temperature range 2.0-300 K. A very weak antiferromagnetic coupling between Re(IV) and Mn(II) occurs in 1 (J = -0.1 cm(-)(1)), whereas a significant ferromagnetic interaction between Re(IV) and M(II) is observed in 2-4 [J = +2.8 (2), +5.2 (3), and +5.9 cm(-)(1) (4)].  相似文献   

18.
The dinucleating ligand, 2,6-bis{[(2-(2-pyridyl)ethyl)(2-pyridylmethyl)-amino]-methyl}-4-methylphenol) (L1OH) reacts with Mn(ClO4)2.6H2O to form the dinuclear complex [Mn2(II,II)(L1O)(mu-OOCCH3)2]ClO4 (1). The electrolytic oxidation of 1 at 0.7 V (vs Ag/AgCl) produces the mixed valent complex [Mn2(II,III)(L1O)(mu-OOCCH3)2](ClO4)2 (1ox) quantitatively, while electrolysis at 0.20 V converts 1ox back to 1. X-ray crystallographic structures show that both 1 and 1ox are dinuclear complexes in which the two manganese ions are each in distorted octahedral coordination environments bridged by the phenoxo oxygen and two acetate ions. The structural changes that occur upon the oxidation 1 to 1ox suggest an extended pi-bonding system involving the phenoxo ring C-O(phenoxo)-Mn(II)-N(pyridyl) chain. In addition, as 1 is oxidized to 1ox, the rearrangements in the coordination sphere resulting from the oxidation of one Mn(II) ion to Mn(III) are transmitted via the bridging Mn-O(phenoxo) bonds and cause structural changes that render the site of the second manganese ion unfit for the +3 state and hence unstable to reduction. Thus the electrolytic oxidation of 1ox in acetonitrile at 1.20 V takes up slightly greater than 1 F of charge/mol of 1ox, but the starting complex, 1ox, is recovered, showing the instability of the Mn2(III,III) state that is formed with respect to reduction to 1ox. Variable-temperature magnetic susceptibility measurements of 1 and 1ox over the temperature range from 1.8 to 300 K can be modeled with magnetic coupling constants J = -4.3 and -4.1 cm(-1), respectively showing the weak antiferromagnetic coupling between the two manganese ions in each dinuclear complex, which is commonly observed among similar phenoxo- and bis-1,3-carboxylato-bridged dinuclear Mn2(II,II) and Mn2(II,III) complexes.  相似文献   

19.
Complexes [M(II)Gd(III){pyCO(OEt)pyC(OH)(OEt)py}?](ClO?)?·EtOH [M(II) = Cu(II) (1), Mn(II) (2), Ni(II) (3), Co(II) (4) and Zn(II) (5)] crystallize in the monoclinic Cc space group and contain one hexacoordinate M(II) ion and one enneacoordinate Gd(III) ion, bridged by three {pyCO(OEt)pyC(OH)(OEt)py}? ligands. Magnetic susceptibility measurements indicate a ferromagnetic interaction for 1 and antiferromagnetic interactions for 2-4. Using the ? = -J?(Gd(III))?(M(II)) spin Hamiltonian formalism, fits to the magnetic susceptibility data yielded J values of +0.32 cm?1 for 1, -1.7 cm?1 for 2, and -0.22 cm?1 for 3. In complex 4, the orbital contributions of Co(II) precluded the determination of the magnetic coupling. The complex follows the Curie-Weiss law with θ = -2.07 K (-1.44 cm?1).  相似文献   

20.
We report a new theoretical model that accounts for the unusual magnetic properties of the cyanide cluster ([MnII(tmphen)2]3[MnIII(CN)6]2) (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline). The model takes into account (1) the spin-orbit interaction, (2) the trigonal component of the crystal field acting on the ground-state cubic (3)T(1) terms of the apical Mn(III) ions, and (3) the isotropic contribution to the exchange interaction between Mn(III) and Mn(II) ions. The ground state of the cluster was shown to be the state with the total angular momentum projection |M(J)| = 15/2; the energies of the low-lying levels obtained from this treatment increase with decreasing |M(J)| values, a situation that leads to a barrier for the reversal of magnetization (U(eff) approximately 30 cm(-1)). The new model explains the recently discovered single-molecule magnet behavior of the ([MnII(tmphen)2]3[MnIII(CN)6]2)in contrast to the traditional approach that takes into account only the ground-state spin (S) and a negative zero-field splitting parameter (D(S) < 0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号