首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Reported herein are the synthesis, structural, magnetic and M?ssbauer spectroscopic characterisation of a dinuclear Fe(II) triple helicate complex [Fe(2)(L)(3)](ClO(4))(4).xH(2)O (x = 1-4), 1(H(2)O), where L is a bis-bidentate imidazolimine ligand. Low temperature structural analysis (150 K) and M?ssbauer spectroscopy (4.5 K) are consistent with one of the Fe(II) centres within the helicate being in the low spin (LS) state with the other being in the high-spin (HS) state resulting in a [LS:HS] species. However, M?ssbauer spectroscopy (295 K) and variable temperature magnetic susceptibility measurements (4.5-300 K) reveal that 1(H(2)O) undergoes a reversible single step spin crossover at one Fe(II) centre at higher temperatures resulting in a [HS:HS] species. Indeed, the T(1/2)(SCO) values at this Fe(II) centre also vary as the degree of hydration, x, within 1(H(2)O) changes from 1 to 4 and are centred between ca. 210 K-265 K, respectively. The dehydration/hydration cycle is reversible and the fully hydrated phase of 1(H(2)O) may be recovered on exposure to water vapour. This magnetic behaviour is in contrast to that observed in the related compound [Fe(2)(L)(3)](ClO(4))(4)·2MeCN, 1(MeCN), whereby fully reversible SCO was observed at each Fe(II) centre to give [LS:LS] species at low temperature and [HS:HS] species at higher temperatures. Reasons for this differing behaviour between 1(H(2)O) and 1(MeCN) are discussed.  相似文献   

2.
The photomagnetic properties of the following iron(II) complexes have been investigated: [Fe(L1)2][BF4]2, [Fe(L2)2][BF4]2, [Fe(L2)2][ClO4]2, [Fe(L3)2][BF4]2, [Fe(L3)2][ClO4]2 and [Fe(L4)2][ClO4]2 (L1 = 2,6-di{pyrazol-1-yl}pyridine; L2 = 2,6-di{pyrazol-1-yl}pyrazine; L3 = 2,6-di{pyrazol-1-yl}-4-{hydroxymethyl}pyridine; and L4 = 2,6-di{4-methylpyrazol-1-yl}pyridine). Compounds display a complete thermal spin transition centred between 200-300 K, and undergo the light-induced excited spin state trapping (LIESST) effect at low temperatures. The T(LIESST) relaxation temperature of the photoinduced high-spin state for each compound has been determined. The presence of sigmoidal kinetics in the HS --> LS relaxation process, and the observation of LITH hysteresis loops under constant irradiation, demonstrate the cooperative nature of the spin transitions undergone by these materials. All the compounds in this study follow a previously proposed linear relation between T(LIESST) and their thermal spin-transition temperatures T(1/2): T(LIESST) = T(0)- 0.3T(1/2). T(0) for these compounds is identical to that found previously for another family of iron(II) complexes of a related tridentate ligand, the first time such a comparison has been made. Crystallographic characterisation of the high- and low-spin forms, the light-induced high-spin state, and the low-spin complex [Fe(L4)2][BF4]2, are described.  相似文献   

3.
Jiang L  Feng XL  Lu TB  Gao S 《Inorganic chemistry》2006,45(13):5018-5026
The preparation and crystal structures of five cyano-bridged Fe-Mn complexes, [(bipy)2Fe(II)(CN)2Mn(II)(bipy)2]2(ClO4)4 (1), [(bipy)2Fe(II)(CN)2Mn(II)(DMF)3(H2O)]2(ClO4)4 (2), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2(H2O)}2 (3), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2}n (4), and Na2[Mn(II)Fe(II)(CN)6] (5) (bipy = 2,2'-bipyridine, Tp = tris(pyrazolyl)hydroborate), are reported here. Compounds 1-4 contain the basic Fe2(CN)4Mn2 square building units, of which 1-3 show the motif of discrete molecular squares of Fe2(CN)4Mn2 and 4 possesses a 1D double-zigzag chain-like structure, while compound 5 is a 3D cubic framework analogous to that of Prussian blue. Compounds 1 and 2 show weak ferromagnetic interactions between two Mn(II) ions through the bent -NC-Fe(II)-CN- bridges. Compound 3 shows weak antiferromagnetic coupling between the Fe(III) and Mn(II) ions, while compound 4 displays a metamagnetic-like behavior with TN = 5.2 K and Hc = 10.5 kOe. Compound 5 exhibits a ferromagnetic ordering with Tc= 3.5 K, coercive field, Hc, = 330 G, and a remnant magnetization of 503 cm3 Oe mol(-1).  相似文献   

4.
A substituted 2,6-bis(pyrazol-3-yl)pyridine (3-bpp) ligand, H(4) L, created to facilitate intermolecular interactions in the solid, has been used to obtain four novel Fe(II) complexes: [Fe(H(4) L)(2) ](ClO(4) )(2) ?2?CH(3) NO(2) ?2?H(2) O, [Fe(H(4) L)(H(2) LBF(2) )](BF(4) )?5?C(3) H(6) O (H(2) LBF(2) is an in situ modified version of H(4) L), [Fe(H(4) L)(2) ](ClO(4) )(2) ?2?C(3) H(7) OH and [Fe(H(4) L)(2) ](ClO(4) )(2) ?4?C(2) H(5) OH. Changing of spin-inactive components (solvents, anions or distant ligand substituents) causes differences to the coordination geometry of the metal that are key to the magnetic proper- ties. Magnetic measurements show that, contrary to the previously published complex [Fe(H(4) L)(2) ](ClO(4) )(2) ?H(2) O?2?CH(3) COCH(3) , the newly synthesised compounds remain in the high-spin (HS) state at all temperatures (5-300?K). A member of the known family of Fe(II) /3-bpp complexes, [Fe(3-bpp)(2) ](ClO(4) )(2) ?1.75?CH(3) COCH(3) ?1.5?Et(2) O, has also been prepared and characterised structurally. In the bulk, this compound exhibits a gradual and incomplete spin transition near 205?K. The single-crystal structure is consistent with it being HS at 250?K and partially low spin at 90?K. Structural analysis of all these compounds reveals that the exact configuration of intermolecular interactions affects dramatically the local geometry at the metal, which ultimately has a strong influence on the magnetic properties. Along this line, the geometry of Fe(II) in all published 3-bpp compounds of known structure has been examined, both by calculating various distortion indices (Σ, Θ, θ and Φ) and by continuous shape measures (CShMs). The results reveal correlations between some of these parameters and indicate that the distortions from octahedral geometry observed on HS systems are mainly due to strains arising from intermolecular interactions. As previously suggested with other related compounds, we observe here that strongly HS-distorted systems have a larger tendency to remain in that state.  相似文献   

5.
The synthesis and characterisation of a pyridazine-containing two-armed grid ligand L2 (prepared from one equivalent of 3,6-diformylpyridazine and two equivalents of p-anisidine) and the resulting transition metal (Zn, Cu, Ni, Co, Fe, Mn) complexes (1-9) are reported. Single-crystal X-ray structure determinations revealed that the copper(I) complex had self-assembled as a [2 x 2] grid, [Cu(I) (4)(L2)(4)][PF(6)](4).(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25) (2.(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25)), whereas the [Zn(2)(L2)(2)(CH(3)CN)(2)(H(2)O)(2)][ClO(4)](4).CH(3)CN (1.CH(3)CN), [Ni(II) (2)(L2)(2)(CH(3)CN)(4)][BF(4)](4).(CH(3)CH(2)OCH(2)CH(3))(0.25) (5 a.(CH(3)CH(2)OCH(2)CH(3))(0.25)) and [Co(II) (2)(L2)(2)(H(2)O)(2)(CH(3)CN)(2)][ClO(4)](4).(H(2)O)(CH(3)CN)(0.5) (6 a.(H(2)O)(CH(3)CN)(0.5)) complexes adopt a side-by-side architecture; iron(II) forms a monometallic cation binding three L2 ligands, [Fe(II)(L2)(3)][Fe(III)Cl(3)OCl(3)Fe(III)].CH(3)CN (7.CH(3)CN). A more soluble salt of the cation of 7, the diamagnetic complex [Fe(II)(L2)(3)][BF(4)](2).2 H(2)O (8), was prepared, as well as two derivatives of 2, [Cu(I) (2)(L2)(2)(NCS)(2)].H(2)O (3) and [Cu(I) (2)(L2)(NCS)(2)] (4). The manganese complex, [Mn(II) (2)(L2)(2)Cl(4)].3 H(2)O (9), was not structurally characterised, but is proposed to adopt a side-by-side architecture. Variable temperature magnetic susceptibility studies yielded small negative J values for the side-by-side complexes: J=-21.6 cm(-1) and g=2.17 for S=1 dinickel(II) complex [Ni(II) (2)(L2)(2)(H(2)O)(4)][BF(4)](4) (5 b) (fraction monomer 0.02); J=-7.6 cm(-1) and g=2.44 for S= 3/2 dicobalt(II) complex [Co(II) (2)(L2)(2)(H(2)O)(4)][ClO(4)](4) (6 b) (fraction monomer 0.02); J=-3.2 cm(-1) and g=1.95 for S= 5/2 dimanganese(II) complex 9 (fraction monomer 0.02). The double salt, mixed valent iron complex 7.H(2)O gave J=-75 cm(-1) and g=1.81 for the S= 5/2 diiron(III) anion (fraction monomer=0.025). These parameters are lower than normal for Fe(III)OFe(III) species because of fitting of superimposed monomer and dimer susceptibilities arising from trace impurities. The iron(II) centre in 7.H(2)O is low spin and hence diamagnetic, a fact confirmed by the preparation and characterisation of the simple diamagnetic iron(II) complex 8. M?ssbauer measurements at 77 K confirmed that there are two iron sites in 7.H(2)O, a low-spin iron(II) site and a high-spin diiron(III) site. A full electrochemical investigation was undertaken for complexes 1, 2, 5 b, 6 b and 8 and this showed that multiple redox processes are a feature of all of them.  相似文献   

6.
A series of first row transition metal complexes of the tripodal ligand 2,2',2"-nitrilotribenzoic acid H3L has been prepared and characterised by X-ray crystallography: Mononuclear [M(L)]- species [Cu(H2O)4]3[Cu(L)(H2O)]6.25H2O (2), [Co(H2O)6][Co(L)(H2O)].8H2O (4), [Zn(H2O)6][Zn(L)(H2O)].8H2O (5) and a neutral [M(L)] complex [Fe(III)2(L)(H2O)3].5H2O (8) are formed as well as dimeric [M(L)]2 2- species (HNEt3)2[Cu(L)]2.2CH3CN (1), (HNEt3)3[Ni(L)]2(ClO4).H2O (3), (HNEt3)2[Fe(II)(L)]2.2CH3CN (6) and (HNEt3)2[Fe(III)2(L)2(mu-O)](7). The complexes display a unique variation in the M-N distance (2.09 A for Cu(II) to 3.29 A for Fe(III)) to the bridgehead triphenylamine donor and are classified into compounds with "On","Off" and "Intermediate" N-coordination. The trigonal-bipyramidal coordination polyhedron changes towards tetrahedral in the intermediate and octahedral in the Off-state. The M-N distance of individual complexes is reversibly tuned by external chemical input such as changes of metal ion oxidation state (Fe(II)/Fe(III)) or variation of the axial coligand as a consequence of solvent or pH variation. Possible reasons for the exceptional tolerance of the M-N bond to distance variations are discussed under consideration of gas phase DFT calculations of [Zn(L)]-.  相似文献   

7.
A series of two-dimensional (2D) oxalate-based compounds, namely [N(n-C4H9)4][M(II)Cr(III)(ox)3] (M(II) = Mn, Fe; ox = C2O4(2-)) and [N(C2H5)(n-C3H7)(n-C4H9)(n-C5H11)][M(II)M(III)(ox)(3)] ((M(II), M(III)) =(Mn, Cr), (Fe, Cr), (Mn, Fe)) were synthesised starting from racemic tris(oxalato)metalate: rac-[M(III)(ox)3]3- (M(III) = Cr, Fe). For Cr(III), the synthesis has been undertaken starting from resolved (Delta)- or (Lambda)-[Cr(III)(ox)3]3-. The natural circular dichroism measurements assess the enantioselectivity of the synthesis. X-Ray powder diffraction analysis has revealed that, when racemic reagents are used to synthesise Mn(II) containing compounds, a R3c achiral space group is found. In contrast a P6(3) chiral space group is found when starting from (Delta)- or (Lambda)-[Cr(III)(ox)3]3-. Surprisingly, whatever the optical purity of the starting building block, all Fe(II) containing compounds crystallise in the P6(3) chiral space group. The magnetic properties of the synthesised compounds confirm that these compounds are ferromagnets for M(III)= Cr. For M(II)= Mn, Theta ranges between 9 and 11 K and T(c) equals 6 K. For M(II)= Fe, Theta ranges between 14 and 16 K and Tc between 11 and 12 K. [N(C2H5)(n-C3H7)(n-C4H9)(n-C5H11)][Mn(II)Fe(III)(ox)3] is an antiferromagnet with Theta = - 107 K and T(N) = 29 K.  相似文献   

8.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

9.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

10.
Du ZY  Prosvirin AV  Mao JG 《Inorganic chemistry》2007,46(23):9884-9894
Hydrothermal reactions of manganese(II) salts with m-sulfophenylphosphonic acid (m-HO3S-Ph-PO3H2, H3L) and 1,10-phenanthroline (phen) led to six novel manganese(II) sulfonate-phosphonates, namely, [Mn2(HL)2(phen)4][Mn2(HL)2(phen)4(H2O)](2).6H2O (1), [Mn4(L)2(phen)8(H2O)2][ClO4](2).3H2O (2), [Mn(phen)(H2O)4]2[Mn4(L)4(phen)4].10H2O (3), [Mn6(L)4(phen)8(H2O)2].4H2O (4), [Mn6(L)4(phen)8(H2O)2].24H2O (5), and [Mn6(L)4(phen)6(H2O)4].5H2O (6). The structure of 1 contains two types of dinuclear manganese(II) clusters, and 2-3 exhibit two types of tetranuclear manganese(II) cluster units. 4-5 feature two different types of isolated hexanuclear manganese(II) clusters, whereas the hexanuclear manganese(II) clusters in 6 are bridged by sulfonate-phosphonate ligands into a 1D chain. Magnetic property measurements indicate that there exist weak antiferromagnetic interactions between magnetic centers in all six compounds.  相似文献   

11.
The influence of lattice water in the magnetic properties of spin-crossover [Fe(bpp)2]X2.nH2O salts [bpp = 2,6-bis(pyrazol-3-yl)pyridine] is well-documented. In most cases, it stabilizes the low-spin state compared to the anhydrous compound. In other cases, it is rather the contrary. Unraveling this mystery implies the study of the microscopic changes that accompany the loss of water. This might be difficult from an experimental point of view. Our strategy is to focus on some salts that undergo a nonreversible dehydration-hydration process without loss of crystallinity. By comparison of the structural and magnetic properties of original and rehydrated samples, several rules concerning the role of water at the microscopic level can be deduced. This paper reports on the crystal structure, thermal studies, and magnetic properties of [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1), [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O.0.5MeOH (2), and [Fe(bpp)2][Cr(phen)(ox)2]2.5.5H2O.2.5MeOH (3). Salt 1 contains both high-spin (HS) and low-spin (LS) Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 353 K and T1/2 upward arrow = 369 K. Rehydration affords the dihydrate [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1r) with 100% HS Fe2+ sites. Salt 2 also contains both HS and LS Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 343 K and T1/2 upward arrow = 348 K. Rehydration affords [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O (2r) with 72% Fe2+ sites in the LS configuration. The structural, magnetic, and thermal properties of these rehydrated compounds 1r and 2r are also discussed. Finally, 1 has been dehydrated and resolvated with MeOH to give [Fe(bpp)2][Cr(bpy)(ox)2]2.MeOH (1s) with 33% HS Fe2+ sites. The influence of the guest solvent in the Fe2+ spin state can anticipate the future applications of these compounds in solvent sensing.  相似文献   

12.
A series of new star-shaped trinuclear Ru(II) complexes of imidazo[4,5-f][1,10]phenanthroline derivatives, [{Ru(bpy)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (6), [{Ru(phen)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (7), [{Ru(bpy)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (8), and [{Ru(phen)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (9) [mes(1,4-phO-Izphen)(3) (4) = 2,4,6-tri methyl-1,3,5-tris(4-oxymethyl-1-yl(1H-imidazo-2-yl-[4,5-f][1,10]phenanthroline)phenyl)benzene and (mes(1,2-phO-Izphen)(3) (5) = 2,4,6-trimethyl-1,3,5-tris(2-oxymethyl-1-yl(1H-imidazo-2-yl[4,5-f][1,10]phenanthroline)phenyl)benzene] have been synthesized and characterized. Their photophysical and electrochemical properties have also been studied. The core molecule, 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1) and the trialdehyde intermediate, 2,4,6-trimethyl-1,3,5-tris(4-oxymethyl-1-formylphenyl)benzene (2) are characterized by single crystal X-ray diffraction: triclinic, P1[combining macron]. The complexes 6-9 exhibit Ru(II) metal centered emission at 618, 601, 615, and 605 nm, respectively, in fluid solution at room temperature. The emission profile and emission maxima are similar and independent of the excitation wavelength for each complex. The complexes 6-9 undergo metal centered oxidation and the E(1/2) values for the Ru(II)/Ru(III) redox couples are 1.33, 1.34, 1.35, and 1.35 V versus Ag/Ag(+), respectively, which are cathodically shifted with respect to that of the mononuclear complex [Ru(bpy)(2)(PIP)](2+) (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline). The study demonstrates the versatility of the highly symmetric trinucleating imidazo[4,5-f][1,10]phenanthroline-based core ligands 4 and 5 in forming trinuclear Ru(II) complexes.  相似文献   

13.
Treatment of several divalent transition-metal trifluoromethanesulfonates [M(II)(OTf)2; M(II) = Mn, Co, Ni] with [NEt4][Tp*Fe(III)(CN)3] [Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate] in DMF affords three isostructural rectangular clusters of {[Tp*Fe(III)(CN)3M(II)(DMF)4]2[OTf]2} x 2DMF (M(II) = Mn, 3; Co, 4; Ni, 5) stoichiometry. Magnetic studies of 3-5 indicate that the Tp*Fe(CN)3(-) centers are highly anisotropic and exhibit antiferromagnetic (3 and 4) and ferromagnetic (5) exchange to afford S = 4, 2, and 3 spin ground states, respectively. ac susceptibility measurements suggest that 4 and 5 exhibit incipient single-molecule magnetic behavior below 2 K.  相似文献   

14.
Oshio H  Yamamoto M  Ito T 《Inorganic chemistry》2002,41(22):5817-5820
Cyanide-bridged molecular squares of [Fe(II)(2)Cu(II)(2)(mu-CN)(4)(dmbpy)(4)(impy)(2)](ClO(4))(4).4CH(3)OH.C(6)H(6) (1) and of [Fe(III)(2)Cu(II)(2)(mu-CN)(4)(dmbpy)(4)(impy)(2)](ClO(4))(6).4CH(3)OH.4H(2)O (2) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine; impy = 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxy) were prepared. In the squares of 1 and 2, the Fe(II/III) (low spin) and Cu(II) ions are alternately bridged by the cyanide groups, in which the cyanide carbon atoms coordinated to the Fe(II) ions and Cu(II) ions are coordinated by imino nitroxide. Magnetic susceptibility measurements for 1 and 2 revealed that the Cu(II) ion and imino nitroxide are ferromagnetically coupled with a fairly strong coupling constant (J(Cu-radical) > 300 K) and act as triplet species. In 1 the Cu(II)-radical moieties are magnetically separated by the Fe(II) ions. In the square of 2, dpi (Fe(III)), dsigma (Cu(II)), and ppi (imino nitroxide) spins are alternately assembled, and this situation allowed the square to have an S = 3 spin ground state. The exchange coupling constant of Fe(III) and the Cu(II)-radical moiety in 2 was estimated to be J = 4.9 cm(-1) (H = -2JSigmaS(Fe).S(Cu-radical)).  相似文献   

15.
The mononuclear iron(III) complexes [Fe(LH2)(H2O)Cl](ClO4)2.2H2O (1) and [Fe(LH2)(H2O)2](ClO4)3.H2O (2) have been prepared by reacting [Pb(LH(2))](ClO4)2 with FeCl3.6H2O and Fe(ClO(4))(3).6H(2)O, respectively. Complex 2 upon treatment with 1 equiv of alkali produces the oxo-bridged dimer [{Fe(LH2)(H2O)}2(mu-O)](ClO4)4.2H2O (3). In these compounds, LH2 refers to the tetraiminodiphenol macrocycle in the zwitterionic form whose two uncoordinated imine nitrogens are protonated and hydrogen-bonded to the metal-bound phenolate oxygens. The aqua ligands of complexes 1-3 get exchanged in acetonitrile. Reaction equilibria involving binding and exchange of the terminal ligands (Cl-/H2O/CH3CN) in these complexes have been studied spectrophotometrically. The equilibrium constant for the aquation reaction (K(aq)) [1]2+ + H2O <==> [2]3+ + Cl- in acetonitrile is 8.65(5) M, and the binding constant (K(Cl)-) for the reaction [1]2+ + Cl- [1Cl]+ + CH3CN is 4.75(5) M. The pK(D) value for the dimerization reaction 2[2]3+ + 2OH- <==> [3]4+ + 3H(2)O in 1:1 acetonitrile-water is 9.38(10). Complexes 1-3 upon reaction with Zn(ClO4)(2).6H(2)O and sodium acetate (OAc), pivalate (OPiv), or bis(4-nitrophenyl)phosphate (BNPP) produce the heterobimetallic complexes [{FeLZn(mu-X)}2(mu-O)](ClO4)2, where X = OAc (4), OPiv (5), and BNPP (6). The pseudo-first-order rate constant (k(obs)) for the formation of 4 at 25 degrees C from either 1 or 3 with an excess of Zn(OAc)2.2H2O in 1:1 acetonitrile-water at pH 6.6 is found to be the same with k(obs) = 1.6(2) x 10(-4) s(-1). The X-ray crystal structures of 3, 4, and 6 have been determined, although the structure determination of 3 was severely affected because of heavy disordering. In 3, the Fe-O-Fe angle is 168.6(6) degrees, while it is exactly 180.0 degrees in 4 and 6. Cyclic and square-wave voltammetric (CV and SWV) measurements have been carried out for complexes 1-4 in acetonitrile. The variation of the solvent composition (acetonitrile-water) has a profound effect on the E(1/2) and DeltaE(p) values. The binding of an additional chloride ion to an iron(III) center in 1-3 is accompanied by a remarkable shift of E(1/2) to more negative values. The observation of quasi-reversible CV for complexes containing a Fe(III)-O-Fe(III) unit (3 and 4) indicates that in the electrochemical time scale unusual Fe(III)-O-Fe(II) is produced. The 1H NMR spectra of complexes 3-6 exhibit hyperfine-shifted signals in the range 0-90 ppm with similar features. The metal-hydrogen distances obtained from T(1) measurements are in good agreement with the crystallographic data. Variable-temperature (2-300 K) magnetic susceptibility measurements carried out for 3 and 4 indicate strong antiferromagnetic exchange interaction (H = -2JS1.S2) between the high-spin iron(III) centers in the Fe-O-Fe unit with J = -114 cm(-1) (3) and -107 cm(-1) (4).  相似文献   

16.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

17.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

18.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

19.
A series of mononuclear square-based pyramidal complexes of iron containing two 1,2-diaryl-ethylene-1,2-dithiolate ligands in various oxidation levels has been synthesized. The reaction of the dinuclear species [Fe(III)2(1L*)2(1L)2]0, where (1L)2- is the closed shell di-(4-tert-butylphenyl)-1,2-ethylenedithiolate dianion and (1L*)1- is its one-electron-oxidized pi-radical monoanion, with [N(n-Bu)4]CN in toluene yields dark green crystals of mononuclear [N(n-Bu)4][Fe(II)(1L*)2(CN)] (1). The oxidation of 1 with ferrocenium hexafluorophosphate yields blue [Fe(III)(1L*)2(CN)] (1ox), and analogously, a reduction with [Cp2Co] yields [Cp2Co][N(n-Bu)4][Fe(II)(1L*)(1L)(CN)] (1red); oxidation of the neutral dimer with iodine gives [Fe(III)(1L*)2I] (2). The dimer reacts with the phosphite P(OCH3)3 to yield [Fe(II)(1L*)2{P(OCH3)3}] (3), and [Fe(III)2(3L*)2(3L)2] reacts with P(OC6H5)3 to give [Fe(II)(3L*)2{P(OC6H5)3}] (4), where (3L)2- represents 1,2-diphenyl-1,2-ethylenedithiolate(2-). Both 3 and 4 were electrochemically one-electron oxidized to the monocations 3ox and 4ox and reduced to the monoanions 3red and 4red. The structures of 1 and 4 have been determined by X-ray crystallography. All compounds have been studied by magnetic susceptibility measurements, X-band EPR, UV-vis, IR, and M?ssbauer spectroscopies. The following five-coordinate chromophores have been identified: (a) [Fe(III)(L*)2X]n, X = CN-, I- (n = 0) (1ox, 2); X = P(OR)3 (n = 1+) )3ox, 4ox) with St = 1/2, SFe = 3/2; (b) [Fe(II)(L*)2X]n, X = CN-, (n = 1-) (1); X = P(OR)3 (n = 0) (3, 4) with St = SFe = 0; (c) [Fe(II)(L*)(L)X]n <--> [Fe(II)(L)(L*)X]n, X = CN- (n = 2-) (1red); X = P(OR)3 (n = 1-) (3red, 4red) with St = 1/2, SFe = 0 (or 1). Complex 1ox displays spin crossover behavior: St = 1/2 <--> St = 3/2 with intrinsic spin-state change SFe = 3/2 <--> SFe = 5/2. The electronic structures of 1 and 1(ox) have been established by density functional theoretical calculations: [Fe(II)(1L*)2(CN)]1- (SFe = 0, St = 0) and [Fe(III)(1L*)2(CN)]0 (SFe = 3/2, St = 1/2).  相似文献   

20.
The syntheses, magnetochemistry and crystallography of [Fe(L1)2]I0.5[I3]1.5 (1), [Fe(L1)2][Co(C2B9H11)2]2 (2) and [Fe(L2)2][SbF6]2 (3) (L1 = 2,6-di(pyrazol-1-yl)pyridine; L2 = 2,6-di(3-methylpyrazol-1-yl)pyridine) are described. Compounds 1 and 3 are high-spin between 5-300 K. For 1, this reflects a novel variation of an angular Jahn-Teller distortion at the iron centre, which traps the molecule in its high-spin state. No such distortion is present in 3; rather, the high-spin nature of this compound may reflect ligand conformational strain caused by an intermolecular steric contact in the crystal lattice. Compound 2 exhibits a gradual high --> low spin transition upon cooling with T(1/2) = 318 +/- 3 K, that is only 50% complete. This reflects the presence of two distinct, equally populated iron environments in the solid. One of these unique iron centres adopts the same angular structural distortion shown by 1 and so is trapped in its high-spin state, while the other, which undergoes the spin-crossover, has a more regular coordination geometry. In contrast with 3, the solvated salts [Fe(L2)2][BF4]2 x 4 CH3CN and [Fe(L2)2][ClO4]2 x (CH3)2CO both undergo gradual thermal spin-transitions centred at 175 +/- 3 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号