首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Since the evaluation of ligand conformations is a crucial aspect of structure-based virtual screening, scoring functions play significant roles in it. However, it is known that a scoring function does not always work well for all target proteins. When one cannot know which scoring function works best against a target protein a priori, there is no standard scoring method to know it even if 3D structure of a target protein-ligand complex is available. Therefore, development of the method to achieve high enrichments from given scoring functions and 3D structure of protein-ligand complex is a crucial and challenging task. To address this problem, we applied SCS (supervised consensus scoring), which employs a rough linear correlation between the binding free energy and the root-mean-square deviation (rmsd) of a native ligand conformations and incorporates protein-ligand binding process with docked ligand conformations using supervised learning, to virtual screening. We evaluated both the docking poses and enrichments of SCS and five scoring functions (F-Score, G-Score, D-Score, ChemScore, and PMF) for three different target proteins: thymidine kinase (TK), thrombin (thrombin), and peroxisome proliferator-activated receptor gamma (PPARgamma). Our enrichment studies show that SCS is competitive or superior to a best single scoring function at the top ranks of screened database. We found that the enrichments of SCS could be limited by a best scoring function, because SCS is obtained on the basis of the five individual scoring functions. Therefore, it is concluded that SCS works very successfully from our results. Moreover, from docking pose analysis, we revealed the connection between enrichment and average centroid distance of top-scored docking poses. Since SCS requires only one 3D structure of protein-ligand complex, SCS will be useful for identifying new ligands.  相似文献   

3.
Docking programs are widely used to discover novel ligands efficiently and can predict protein-ligand complex structures with reasonable accuracy and speed. However, there is an emerging demand for better performance from the scoring methods. Consensus scoring (CS) methods improve the performance by compensating for the deficiencies of each scoring function. However, conventional CS and existing scoring functions have the same problems, such as a lack of protein flexibility, inadequate treatment of salvation, and the simplistic nature of the energy function used. Although there are many problems in current scoring functions, we focus our attention on the incorporation of unbound ligand conformations. To address this problem, we propose supervised consensus scoring (SCS), which takes into account protein-ligand binding process using unbound ligand conformations with supervised learning. An evaluation of docking accuracy for 100 diverse protein-ligand complexes shows that SCS outperforms both CS and 11 scoring functions (PLP, F-Score, LigScore, DrugScore, LUDI, X-Score, AutoDock, PMF, G-Score, ChemScore, and D-score). The success rates of SCS range from 89% to 91% in the range of rmsd < 2 A, while those of CS range from 80% to 85%, and those of the scoring functions range from 26% to 76%. Moreover, we also introduce a method for judging whether a compound is active or inactive with the appropriate criterion for virtual screening. SCS performs quite well in docking accuracy and is presumably useful for screening large-scale compound databases before predicting binding affinity.  相似文献   

4.
Protein-ligand docking programs have been used to efficiently discover novel ligands for target proteins from large-scale compound databases. However, better scoring methods are needed. Generally, scoring functions are optimized by means of various techniques that affect their fitness for reproducing X-ray structures and protein-ligand binding affinities. However, these scoring functions do not always work well for all target proteins. A scoring function should be optimized for a target protein to enhance enrichment for structure-based virtual screening. To address this problem, we propose the supervised scoring model (SSM), which takes into account the protein-ligand binding process using docked ligand conformations with supervised learning for optimizing scoring functions against a target protein. SSM employs a rough linear correlation between binding free energy and the root mean square deviation of a native ligand for predicting binding energy. We applied SSM to the FlexX scoring function, that is, F-Score, with five different target proteins: thymidine kinase (TK), estrogen receptor (ER), acetylcholine esterase (AChE), phosphodiesterase 5 (PDE5), and peroxisome proliferator-activated receptor gamma (PPARgamma). For these five proteins, SSM always enhanced enrichment better than F-Score, exhibiting superior performance that was particularly remarkable for TK, AChE, and PPARgamma. We also demonstrated that SSM is especially good at enhancing enrichments of the top ranks of screened compounds, which is useful in practical drug screening.  相似文献   

5.
We have developed an iterative knowledge-based scoring function (ITScore) to describe protein-ligand interactions. Here, we assess ITScore through extensive tests on native structure identification, binding affinity prediction, and virtual database screening. Specifically, ITScore was first applied to a test set of 100 protein-ligand complexes constructed by Wang et al. (J Med Chem 2003, 46, 2287), and compared with 14 other scoring functions. The results show that ITScore yielded a high success rate of 82% on identifying native-like binding modes under the criterion of rmsd < or = 2 A for each top-ranked ligand conformation. The success rate increased to 98% if the top five conformations were considered for each ligand. In the case of binding affinity prediction, ITScore also obtained a good correlation for this test set (R = 0.65). Next, ITScore was used to predict binding affinities of a second diverse test set of 77 protein-ligand complexes prepared by Muegge and Martin (J Med Chem 1999, 42, 791), and compared with four other widely used knowledge-based scoring functions. ITScore yielded a high correlation of R2 = 0.65 (or R = 0.81) in the affinity prediction. Finally, enrichment tests were performed with ITScore against four target proteins using the compound databases constructed by Jacobsson et al. (J Med Chem 2003, 46, 5781). The results were compared with those of eight other scoring functions. ITScore yielded high enrichments in all four database screening tests. ITScore can be easily combined with the existing docking programs for the use of structure-based drug design.  相似文献   

6.
We assess the performance of several machine learning-based scoring methods at protein-ligand pose prediction, virtual screening, and binding affinity prediction. The methods and the manner in which they were trained make them sufficiently diverse to evaluate the utility of various strategies for training set curation and binding pose generation, but they share a novel approach to classification in the context of protein-ligand scoring. Rather than explicitly using structural data such as affinity values or information extracted from crystal binding poses for training, we instead exploit the abundance of data available from high-throughput screening to approach the problem as one of discriminating binders from non-binders. We evaluate the performance of our various scoring methods in the 2015 D3R Grand Challenge and find that although the merits of some features of our approach remain inconclusive, our scoring methods performed comparably to a state-of-the-art scoring function that was fit to binding affinity data.  相似文献   

7.
Empirical scoring functions provide estimates of the free energy of protein-ligand binding in situations when atomic-scale simulations are intractable, for example, in virtual high-throughput screening. Currently, such scoring functions are often inaccurate, and further improvements are complicated by the lack of reliable training data, the complex interplay between scoring functions and docking algorithms, and an inconsistent statistical treatment of positive and negative training data. In comparison to various other performance measures of scoring functions, "analysis of variance" provides a well-behaved objective function for optimization, which focuses on the signal-to-noise ratio of ligand-decoy discrimination. In combination with a large database of ligands and decoys, an in situ optimization of scoring function parameters was able to generate improved, target-specific scoring functions for three different proteins of pharmaceutical interest: cyclin-dependent kinase 2, the estrogen receptor, and cyclooxygenase-2. Statistical analysis of the improvements observed in "receiver-operating characteristic" curves showed that the optimized scoring functions achieved a significantly (between p < 0.0001 and p < 0.05) higher enrichment of true ligands. A scaffold dependence of the resulting binding modes was observed, which is discussed in conjunction with the rigid receptor hypothesis commonly made in protein-ligand docking. In summary, the approach described here represents a well-adapted statistical method for setting up scoring functions.  相似文献   

8.
New empirical scoring functions have been developed to estimate the binding affinity of a given protein-ligand complex with known three-dimensional structure. These scoring functions include terms accounting for van der Waals interaction, hydrogen bonding, deformation penalty, and hydrophobic effect. A special feature is that three different algorithms have been implemented to calculate the hydrophobic effect term, which results in three parallel scoring functions. All three scoring functions are calibrated through multivariate regression analysis of a set of 200 protein-ligand complexes and they reproduce the binding free energies of the entire training set with standard deviations of 2.2 kcal/mol, 2.1 kcal/mol, and 2.0 kcal/mol, respectively. These three scoring functions are further combined into a consensus scoring function, X-CSCORE. When tested on an independent set of 30 protein-ligand complexes, X-CSCORE is able to predict their binding free energies with a standard deviation of 2.2 kcal/mol. The potential application of X-CSCORE to molecular docking is also investigated. Our results show that this consensus scoring function improves the docking accuracy considerably when compared to the conventional force field computation used for molecular docking.  相似文献   

9.
Empirical scoring functions used in protein-ligand docking calculations are typically trained on a dataset of complexes with known affinities with the aim of generalizing across different docking applications. We report a novel method of scoring-function optimization that supports the use of additional information to constrain scoring function parameters, which can be used to focus a scoring function’s training towards a particular application, such as screening enrichment. The approach combines multiple instance learning, positive data in the form of ligands of protein binding sites of known and unknown affinity and binding geometry, and negative (decoy) data of ligands thought not to bind particular protein binding sites or known not to bind in particular geometries. Performance of the method for the Surflex-Dock scoring function is shown in cross-validation studies and in eight blind test cases. Tuned functions optimized with a sufficient amount of data exhibited either improved or undiminished screening performance relative to the original function across all eight complexes. Analysis of the changes to the scoring function suggest that modifications can be learned that are related to protein-specific features such as active-site mobility.  相似文献   

10.
In molecular docking, it is challenging to develop a scoring function that is accurate to conduct high-throughput screenings. Most scoring functions implemented in popular docking software packages were developed with many approximations for computational efficiency, which sacrifices the accuracy of prediction. With advanced technology and powerful computational hardware nowadays, it is feasible to use rigorous scoring functions, such as molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) and molecular mechanics/generalized Born surface area (MM/GBSA) in molecular docking studies. Here, we systematically investigated the performance of MM/PBSA and MM/GBSA to identify the correct binding conformations and predict the binding free energies for 98 protein-ligand complexes. Comparison studies showed that MM/GBSA (69.4%) outperformed MM/PBSA (45.5%) and many popular scoring functions to identify the correct binding conformations. Moreover, we found that molecular dynamics simulations are necessary for some systems to identify the correct binding conformations. Based on our results, we proposed the guideline for MM/GBSA to predict the binding conformations. We then tested the performance of MM/GBSA and MM/PBSA to reproduce the binding free energies of the 98 protein-ligand complexes. The best prediction of MM/GBSA model with internal dielectric constant 2.0, produced a Spearman's correlation coefficient of 0.66, which is better than MM/PBSA (0.49) and almost all scoring functions used in molecular docking. In summary, MM/GBSA performs well for both binding pose predictions and binding free-energy estimations and is efficient to re-score the top-hit poses produced by other less-accurate scoring functions.  相似文献   

11.
In the context of virtual database screening, calculations of protein-ligand binding entropy of relative and overall molecular motions are challenging, owing to the inherent structural complexity of the ligand binding well in the energy landscape of protein-ligand interactions and computing time limitations. We describe a fast statistical thermodynamic method for estimation the binding entropy to address the challenges. The method is based on the integration of the configurational integral over clusters obtained from multiple docked positions. We apply the method in conjunction with 11 popular scoring functions (AutoDock, ChemScore, DrugScore, D-Score, F-Score, G-Score, LigScore, LUDI, PLP, PMF, X-Score) to evaluate the binding entropy of 100 protein-ligand complexes. The averaged values of binding entropy contribution vary from 6.2 to 9.1 kcal/mol, showing good agreement with literature. We calculate positional sizes and the angular volume of the native ligand wells. The averaged geometric mean of positional sizes in principal directions varies from 0.8 to 1.4 A. The calculated range of angular volumes is 3.3-11.8 rad(2). Then we demonstrate that the averaged six-dimensional volume of the native well is larger than the volume of the most populated non-native well in energy landscapes described by all of 11 scoring functions.  相似文献   

12.
Applications in structural biology and medicinal chemistry require protein-ligand scoring functions for two distinct tasks: (i) ranking different poses of a small molecule in a protein binding site and (ii) ranking different small molecules by their complementarity to a protein site. Using probability theory, we developed two atomic distance-dependent statistical scoring functions: PoseScore was optimized for recognizing native binding geometries of ligands from other poses and RankScore was optimized for distinguishing ligands from nonbinding molecules. Both scores are based on a set of 8,885 crystallographic structures of protein-ligand complexes but differ in the values of three key parameters. Factors influencing the accuracy of scoring were investigated, including the maximal atomic distance and non-native ligand geometries used for scoring, as well as the use of protein models instead of crystallographic structures for training and testing the scoring function. For the test set of 19 targets, RankScore improved the ligand enrichment (logAUC) and early enrichment (EF(1)) scores computed by DOCK 3.6 for 13 and 14 targets, respectively. In addition, RankScore performed better at rescoring than each of seven other scoring functions tested. Accepting both the crystal structure and decoy geometries with all-atom root-mean-square errors of up to 2 ? from the crystal structure as correct binding poses, PoseScore gave the best score to a correct binding pose among 100 decoys for 88% of all cases in a benchmark set containing 100 protein-ligand complexes. PoseScore accuracy is comparable to that of DrugScore(CSD) and ITScore/SE and superior to 12 other tested scoring functions. Therefore, RankScore can facilitate ligand discovery, by ranking complexes of the target with different small molecules; PoseScore can be used for protein-ligand complex structure prediction, by ranking different conformations of a given protein-ligand pair. The statistical potentials are available through the Integrative Modeling Platform (IMP) software package (http://salilab.org/imp) and the LigScore Web server (http://salilab.org/ligscore/).  相似文献   

13.
This study addresses a number of topical issues around the use of protein-ligand docking in virtual screening. We show that, for the validation of such methods, it is key to use focused libraries (containing compounds with one-dimensional properties, similar to the actives), rather than "random" or "drug-like" libraries to test the actives against. We also show that, to obtain good enrichments, the docking program needs to produce reliable binding modes. We demonstrate how pharmacophores can be used to guide the dockings and improve enrichments, and we compare the performance of three consensus-ranking protocols against ranking based on individual scoring functions. Finally, we show that protein-ligand docking can be an effective aid in the screening for weak, fragment-like binders, which has rapidly become a popular strategy for hit identification. All results presented are based on carefully constructed virtual screening experiments against four targets, using the protein-ligand docking program GOLD.  相似文献   

14.
A central problem in de novo drug design is determining the binding affinity of a ligand with a receptor. A new scoring algorithm is presented that estimates the binding affinity of a protein-ligand complex given a three-dimensional structure. The method, LISA (Ligand Identification Scoring Algorithm), uses an empirical scoring function to describe the binding free energy. Interaction terms have been designed to account for van der Waals (VDW) contacts, hydrogen bonding, desolvation effects, and metal chelation to model the dissociation equilibrium constants using a linear model. Atom types have been introduced to differentiate the parameters for VDW, H-bonding interactions, and metal chelation between different atom pairs. A training set of 492 protein-ligand complexes was selected for the fitting process. Different test sets have been examined to evaluate its ability to predict experimentally measured binding affinities. By comparing with other well-known scoring functions, the results show that LISA has advantages over many existing scoring functions in simulating protein-ligand binding affinity, especially metalloprotein-ligand binding affinity. Artificial Neural Network (ANN) was also used in order to demonstrate that the energy terms in LISA are well designed and do not require extra cross terms.  相似文献   

15.
16.
Using a novel iterative method, we have developed a knowledge-based scoring function (ITScore) to predict protein-ligand interactions. The pair potentials for ITScore were derived from a training set of 786 protein-ligand complex structures in the Protein Data Bank. Twenty-six atom types were used based on the atom type category of the SYBYL software. The iterative method circumvents the long-standing reference state problem in the derivation of knowledge-based scoring functions. The basic idea is to improve pair potentials by iteration until they correctly discriminate experimentally determined binding modes from decoy ligand poses for the ligand-protein complexes in the training set. The iterative method is efficient and normally converges within 20 iterative steps. The scoring function based on the derived potentials was tested on a diverse set of 140 protein-ligand complexes for affinity prediction, yielding a high correlation coefficient of 0.74. Because ITScore uses SYBYL-defined atom types, this scoring function is easy to use for molecular files prepared by SYBYL or converted by software such as BABEL.  相似文献   

17.
Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening (VS), which is most frequently manifested in the scoring functions' inability to discriminate between true ligands vs known nonbinders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from VS. We have hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose decoys) should improve the performance of VS in terms of improved identification of true binders. Using several concepts from the field of cheminformatics, we have developed a novel approach to identifying pose decoys from an ensemble of poses generated by computational docking procedures. We demonstrate that the use of target-specific pose (scoring) filter in combination with a physical force field-based scoring function (MedusaScore) leads to significant improvement of hit rates in VS studies for 12 of the 13 benchmark sets from the clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function outperforms several conventional structure-based scoring functions, including XSCORE::HMSCORE, ChemScore, PLP, and Chemgauss3, in 6 out of 13 data sets at early stage of VS (up 1% decoys of the screening database). We compare our hybrid method with several novel VS methods that were recently reported to have good performances on the same DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in comparison with two ligand-based methods (FieldScreen and FLAP::LBX). We also compare our method with FLAP::RBLB, a high-performance VS method that also utilizes both the receptor and the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method are highly complementary to those retrieved using FLAP::RBLB, hinting effective directions for best VS applications. We suggest that this integrative VS approach combining cheminformatics and molecular mechanics methodologies may be applied to a broad variety of protein targets to improve the outcome of structure-based drug discovery studies.  相似文献   

18.
Based on a statistical mechanics-based iterative method, we have extracted a set of distance-dependent, all-atom pairwise potentials for protein-ligand interactions from the crystal structures of 1300 protein-ligand complexes. The iterative method circumvents the long-standing reference state problem in knowledge-based scoring functions. The resulted scoring function, referred to as ITScore 2.0, has been tested with the CSAR (Community Structure-Activity Resource, 2009 release) benchmark of 345 diverse protein-ligand complexes. ITScore 2.0 achieved a Pearson correlation of R(2) = 0.54 in binding affinity prediction. A comparative analysis has been done on the scoring performances of ITScore 2.0, the van der Waals (VDW) scoring function, the VDW with heavy atoms only, and the force field (FF) scoring function of DOCK which consists of a VDW term and an electrostatic term. The results reveal several important factors that affect the scoring performances, which could be helpful for the improvement of scoring functions.  相似文献   

19.
20.
The evaluation of ligand conformations is a crucial aspect of structure-based virtual screening, and scoring functions play significant roles in it. While consensus scoring (CS) generally improves enrichment by compensating for the deficiencies of each scoring function, the strategy of how individual scoring functions are selected remains a challenging task when few known active compounds are available. To address this problem, we propose feature selection-based consensus scoring (FSCS), which performs supervised feature selection with docked native ligand conformations to select complementary scoring functions. We evaluated the enrichments of five scoring functions (F-Score, D-Score, PMF, G-Score, and ChemScore), FSCS, and RCS (rank-by-rank consensus scoring) for four different target proteins: acetylcholine esterase (AChE), thrombin (thrombin), phosphodiesterase 5 (PDE5), and peroxisome proliferator-activated receptor gamma (PPARgamma). The results indicated that FSCS was able to select the complementary scoring functions and enhance ligand enrichments and that it outperformed RCS and the individual scoring functions for all target proteins. They also indicated that the performances of the single scoring functions were strongly dependent on the target protein. An especially favorable result with implications for practical drug screening is that FSCS performs well even if only one 3D structure of the protein-ligand complex is known. Moreover, we found that one can infer which scoring functions significantly enrich active compounds by using feature selection before actual docking and that the selected scoring functions are complementary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号