首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A nano-material carboxylic acid functionalized graphene (graphene-COOH) was prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electrooxidation behaviors of adenine and guanine on the graphene-COOH modified glassy carbon electrode (graphene-COOH/GCE) were carefully investigated by cyclic voltammetry and differential pulse voltammetry. The results indicated that both adenine and guanine showed the increase of the oxidation peak currents with the negative shift of the oxidation peak potentials in contrast to that on the bare glassy carbon electrode. The electrochemical parameters of adenine and guanine on the graphene-COOH/GCE were calculated and a simple and reliable electroanalytical method was developed for the detection of adenine and guanine, respectively. The modified electrode exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.334V. The detection limit for individual determination of guanine and adenine was 5.0×10(-8)M and 2.5×10(-8)M (S/N=3), respectively. Furthermore, the measurements of thermally denatured single-stranded DNA were carried out and the value of (G+C)/(A+T) of single-stranded DNA was calculated as 0.80. The biosensor exhibited some advantages, such as simplicity, rapidity, high sensitivity, good reproducibility and long-term stability.  相似文献   

2.
《Electroanalysis》2018,30(2):238-249
A copper nano particles and cerium (IV) oxide modified carbon nanotube based composite on glassy carbon electrode (Cu−CeO2/MWCNT/GCE) was fabricated for simultaneous determination of guanine and adenine. The surface morphology, chemistry and conductance of the prepared electrodes were characterized by scanning electron microscopy (SEM), energy dispersion X‐ray (EDX), X‐Ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The Cu−CeO2/MWCNT/GCE improved electrochemical behaviour of guanine and adenine compared to other electrodes. The modified electrode was also used for individual and simultaneous determination of guanine and adenine. Under optimized conditions, the calibration curves were obtained linearly in the range of 0.20 to 6.00 μM for the guanine and 0.10 to 8.0 μM for the adenine by differential pulse voltammetry. The limits of detection of guanine and adenine were calculated as 0.128 and 0.062 μM, respectively. Interferences studies were also performed in the presence of inorganic and organic compounds. Moreover, the determination of guanine and adenine contents were carried out in a calf thymus DNA sample by the developed method with satisfactory results.  相似文献   

3.
Dopamine-melanin colloidal nanospheres (Dpa-melanin CNDs)–graphene composites-modified glassy carbon electrode (GCE) was prepared by a simple procedure and then successfully used to simultaneously determine guanine and adenine. Scanning electron microscopy (SEM) images and transmission electron microscopy (TEM) were used to characterize the morphology of the Dpa-melanin CNSs–graphene composite. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the electrode modifying process. Differential pulse voltammetry (DPV) was used to study the electrocatalytic activity toward the electrochemical oxidation of guanine and adenine. The modified electrode exhibited enhanced electrocatalytic behavior and good stability for the simultaneous determination of guanine and adenine compared with bare GCE. The electrochemical biosensor exhibited wide linear range of 0.5 to 150 μM with detection limit of 0.05 and 0.03 μM for guanine and adenine detection (S/N?=?3), respectively. Furthermore, the biosensor showed high sensitivity, good selectivity, good reproducibility, and long-term stability to guanine and adenine detection. At the same time, the fabricated electrode was successfully applied for the determination of guanine and adenine in denatured DNA samples with satisfying results. These results demonstrated that Dpa-melanin CNSs–graphene composite was a promising substrate for the development of high-performance electrochemical biosensor.  相似文献   

4.
In this work, a poly(alizarin red)/Graphene composite film modified glassy carbon electrode (PAR/Graphene/GCE) was prepared for simultaneous determination of four DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment. The morphology and interface property of PAR/Graphene films were examined by scanning electron microscopy and electrochemical impedance spectroscopy. The PAR/Graphene/GCE exhibited excellent electrocatalytic activity toward purine (guanine and adenine) and pyrimidine (thymine and cytosine) in 0.1 M phosphate buffer solution (pH 7.4). Under optimum conditions, differential pulse voltammetry was used to detect the oxidation of purine and pyrimidine. The results showed that PAR/Graphene/GCE exhibited well-separated peaks, low detection limit, high sensitivity and wide linear range for simultaneous detection of purine and pyrimidine. The proposed sensor also has good stability and reproducibility. Furthermore, the modified electrode was applied for the detection of DNA bases in a fish sperm DNA sample with satisfactory results.  相似文献   

5.
采用电化学沉积法制备了纳米金修饰玻碳电极,并用循环伏安法和电化学阻抗法进行了表征,以此建立了一种直接测定鸟嘌呤的电分析方法。在磷酸盐缓冲溶液(pH 6.0)中,研究了鸟嘌呤在纳米金修饰电极上的电化学行为,实验结果表明,纳米金修饰电极可以增强鸟嘌呤在电极表面的吸附,并加快鸟嘌呤在电极表面的电子传输,使其电化学信号明显增大,检测灵敏度大大提高,该修饰电极对鸟嘌呤表现出良好的电催化性能。在优化实验条件下对鸟嘌呤进行测定,方法的线性范围为8.0×10-7~6.0×10-5mol/L,检出限为1.0×10-8mol/L,在鸟嘌呤浓度为1.0×10-5mol/L时测得RSD(n=10)为2.5%。  相似文献   

6.
夏雅淋  邓春艳  向娟 《电化学》2012,18(4):365-370
利用掺硼碳纳米管(BCNTs)/GC电极研究了鸟嘌呤(G)和腺嘌呤(A)的电化学氧化行为. 与GC和CNTs/GC电极相比,BCNTs/GC电极具有更强的电催化活性,且响应电流明显增加. 两混合样品在BCNTs/GC电极上的氧化峰间隔较大,可实现对A和G的同时检测.  相似文献   

7.
A large mesoporous carbon modified glassy carbon electrode (LMC/GCE) was prepared. The morphology and structure of the LMC were characterized. The LMC/GCE was used to investigate the electrochemical behaviors of metabolites of purine nucleotide, uric acid (UA), xanthine (XA) and hypoxanthine (HX). The LMC/GCE exhibited high electrocatalytic activity towards the three compounds when compared with those obtained at the GCE. Furthermore, the LMC/GCE realized simultaneous determination of UA, XA and HX at a physiological pH of 7.0 with wide linear range and low detection limit. The electrocatalytic activity of the LMC/GCE towards guanine (G) and adenine (A) was also investigated.  相似文献   

8.
We have prepared a new voltammetric sensor for guanine and adenine. It is based on a glassy carbon electrode modified with a Langmuir-Blodgett film made from tetraoxocalix[2]arene[2]triazine. The direct electro-oxidation of adenine and guanine was investigated and the results indicat that in contrast to a bare glassy carbon electrode both guanine and adenine cause an increase in the oxidation peak currents along with a negative shift of the oxidation potentials. The electrode enables the simultaneous determination of guanine and adenine using square wave voltammetry. Analysis of acid denatured calf thymus DNA was carried out and the value of (G + C)/(A + T) was correctly found to be 0.75.
Figure
Both guanine and adenine showed the increase of the oxidation peak currents on LBTOCT-GCE in contrast to that on the bare glassy carbon electrode (GCE).  相似文献   

9.
A simple and reliable method based on adsorptive stripping at an electrochemically pretreated glassy carbon electrode (GCE) was proposed for simultaneous or individual determination of guanine and adenine in DNA. The detection sensitivity of guanine and adenine was improved greatly by activating the GCE electrochemically. After accumulation on pretreated GCE at open circuit for 5 min or at the potential of +0.3 V for 120 s, guanine and adenine produced well-defined oxidation peaks at about +0.8 and +1.1 V, respectively in pH 5 phosphate buffer. The detection limit for individual measurement of guanine and adenine was 4.5 ng ml−1 (3×10−8 mol l−1) and 4 ng ml−1 (3×10−8 mol l−1), respectively. Acid-denatured DNA showed two oxidation peaks corresponding to guanine and adenine residues in the same buffer. The proposed method can be used to estimate the guanine and adenine contents in DNA with good selectivity in a linear range of 0.25-5 μg ml−1.  相似文献   

10.
《Electroanalysis》2017,29(6):1618-1625
An electrochemical sensor was developed based on gold nanoparticles incorporated in mesoporous MFI zeolite for the determination of purine bases. Au nanoparticles (AuNPs) were incorporated into the mesoporous MFI zeolite (AuNPs/m‐MFI) by post‐grafting reaction. The composite materials were characterized by transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and electrochemical methods. Au nanoparticles with a size of 5‐20 nm are uniformly dispersed in the pores of mesoporous MFI zeolite. And the morphology of MFI zeolite can be perfectly kept after pore expansion and Au nanoparticles incorporation. The electrocatalytic oxidation of purine bases (guanine and adenine in DNA) is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface‐confined Au nanoparticles provide the good catalytic activity for oxidation of purine bases. The simultaneous detection of guanine and adenine can be achieved at AuNPs/m‐MFI composites modified glassy carbon electrode (GCE). The electrochemical sensor based on AuNPs/m‐MFI exhibits wide linear range of 0.5–500 μM and 0.8–500 μM with detection limit of 0.25 and 0.29 μM for guanine and adenine, respectively. Moreover, the electrochemical sensor is applied to evaluation of guanine and adenine in herring sperm DNA samples with satisfactory results.  相似文献   

11.
A novel multiwalled nanotubes (MWNTs)/Cerium(III) 12 ‐ tungstophosphoric acid (CePW) nanocomposite film glassy carbon electrode was prepared in this paper. Electrochemical behaviors of the CePW/MWNTs modified electrode were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This modified electrode brought new capabilities for electrochemical devices by combining the advantages of carbon nanotubes, rare‐earth, and heteropoly‐acids. The results demonstrated that the CePW/MWNTs modified electrode exhibited enhanced electrocatalytic behavior and good stability for the detection of guanine and adenine in 0.1 M PBS (pH 7.0). The experimental parameters were optimized and a direct electrochemical method for the simultaneous determination of guanine and adenine was proposed. The detection limit (S/N=3) for guanine and adenine was 2.0×10?8 M and 3.0×10?8 M, respectively. Further, the acid‐denatured calf thymus DNA was also detected and the result was satisfied.  相似文献   

12.
Hybrid silica films containing cation‐exchange polyelectrolytes were designed and used to modify a glassy carbon electrode (GCE) for voltammetric determination of purine bases. Hybrid silica‐polyelectrolyte films synthesised in the presence of adenine as structure directed component have demonstrated enhanced sorption capacity to purine base. The anodic peaks of adenine and guanine at a hybrid film‐modified GCE were observed at +1.55 and +1.1 V, respectively, in phosphate buffer solution at pH 3.5. Oxidation currents of adenine and guanine were proportional to their concentration in the range of 0.02–0.50 mM, with a detection limit of 0.015 mM. The developed method was used to determine adenine in adenosine triphosphate and purine bases in hydrolyzed solutions of DNA and demonstrated good metrological characteristics.  相似文献   

13.
Performance of glassy carbon electrode on the determination of purines and DNA was found to be improved dramatically by activating the GCE with a simple but effective electrochemical pretreatment. Characteristics such as lowering of oxidation potential, enhancement of peak current and elimination of fouling effect were found for the activated GCE. By flow injection analysis, good reproducibility with relative standard deviations of 0.59 and 2.01% (n = 11) and rather low detection limits of 0.6 + 0.1 and 3.0 ± 0.4 nM can be obtained for the analysis of guanine and adenine. Solutions of denatured calf thymus DNA were analyzed by differential pulse voltammetry with the activated GCE. Good agreement between the obtained results and the known values confirms the feasibility of the activated GCE for DNA analysis.  相似文献   

14.
o-Dianisidine (3,3'-dimethoxybenzidine) is applied in the production of some dyes and also used in analytical tests. However, this compound is anticipated to be a human carcinogen. An analytical strategy utilizing square wave voltammetry for the determination of o-dianisidine is presented. An electrochemical system was consisted of three electrodes: carbon paste working electrode, platinum wire counter electrode and silver-silver chloride (Ag/AgCl) reference electrode. However, square wave voltammograms of direct measurements of o-dianisidine were found to be hardly reproducible, exhibiting few peaks due to some labile short-lived intermediates with the only exception of a quite stable peak at +0.7 V vs. Ag/AgCl. Quantitative determination of o-dianisidine gave satisfactory results only when the carbon paste working electrode was replaced by deoxyribonucleic acids (DNA) electrode obtained by immobilization of double-stranded (ds) DNA on carbon electrode. Square wave voltammogram of DNA showed two peaks attributed to adenine and guanine and the latter was used as analytical signal. After interaction with o-dianisidine, guanine oxidation peak was reduced to the extent related to the concentration of the analyte. Initial reduction of guanine peak took place already at the concentration of o-dianisidine equal to 0.4 microM; high concentrations (above 100 microM) of the analyte quenched completely a guanine response. The presented electrochemical system enables a specific detection of o-dianisidine by the presence of an oxidation peak at +0.7 V and its quantitative determination by measuring a reduction of guanine peak by means of a DNA sensor.  相似文献   

15.
A graphitized mesoporous carbon modified glassy carbon electrode (GCE/GMC) prepared by drop coating method without any pre-anodization of the underlying GCE or external binder/matrix, has been demonstrated for simultaneous electrochemical oxidation of guanine (G) and adenine (A) at oxidation potentials 0.60 and 0.85 V vs. Ag/AgCl, respectively, in the presence of thymine (T) by differential pulse voltammetric method in pH 7 phosphate buffer solution. Control voltammetric experiments with unmodified GCE, graphite nanopowder and multiwalled carbon nanotube modified electrodes yielded either feeble or with high-background current responses. Interestingly, the GCE/GMC showed highly efficient, stable and well-defined voltammetric signals. Thymine oxidation signal noticed discretely at 1.15 V vs. Ag/AgCl on the GCE/GMC was not influenced for the simultaneous determination of G and A. Constructed DPV calibration graphs were linear in the range of 25–200 and 25–150 μM, respectively, for the G and A. Corresponding detection limit (S/N?=?3) values are 0.76 and 0.63 μM. Real sample analyses for the detection of G and A concentrations in calf-thymus DNA (detected [G]/[A] ratio?=?0.82), beef brain and beef liver were successfully demonstrated with recovery values ~100 %.  相似文献   

16.
The fabrication of poly(2,6-pyridinedicarboxylic acid)/MWNTs modified glass electrode(PPDA/MWNTs/GCE) was proposed and used for individual or simultaneous determination of guanine and adenine.The performances of the PPDA/MWNTs/GCE were characterized with cyclic voltammetry(CV).The modified electrode exhibited enhanced electrocatalytic behavior and good stability for the detection of guanine and adenine.Differential pulse voltammetry(DPV) was used to determine the concentration of guanine,adenine.The detection limit(S/N = 3) for guanine and adenine was 0.045μmol/L and 0.05μmol/L,respectively.The electrochemical method for the measurement of guanine and adenine in calf thymus DNA was also developed with this modified electrode and the result was satisfactory.  相似文献   

17.
Carbon nanotube enhanced electrochemically activated glassy carbon electrode (GCE) has been prepared and applied for sensitive electrochemical determination of DNA and DNA bases. The results indicate that the relative activation could efficiently enhance electron transfer at the pretreated GCE so that this carbon nanotube activated glassy carbon electrode could provide relatively low detection limit with good reproducibility for the respective biomolecular determination. Besides, greatly enhanced sensitivity could be obtained for the relevant electrochemical detection of the bio‐recognition process including DNA biosensing by using the carbon nanotube activated GCE. This approach provided a detection limit of 7.5 nM for guanine and 150 ng/mL for acid denatured DNA. These observations suggest that the carbon nanotube activated glassy carbon electrode could be utilized as a very sensitive and stable biosensor for some specific biological process.  相似文献   

18.
研究了酵母核糖核酸(yRNA)在碳纳米管(MWNT)修饰电极上的电化学行为,优化了测定参数,在此基础上建立了一种直接测定yRNA的电分析测试方法。yRNA在碳纳米管修饰电极上于磷酸盐缓冲溶液中在0.758V处产生不可逆的氧化电流峰,峰电流与yRNA的质量浓度在1~10mg/mL之间有良好的线性关系,线性回归方程为:Iρ=0.0813ρ+0.1807,相关系数r为0.9980,检出限为0.6mg/mL。  相似文献   

19.
An electrochemical sensor for simultaneous determination of dopamine (DA), uric acid (UA), guanine (G), and adenine (A) has been constructed by copolymerizing melamine monomer and Ag ions on a glassy carbon electrode (GCE) with cyclic voltammetry. The poly-melamine and nano Ag formed a hybridized film on the surface of the GCE. The morphology of the film was characterized by scanning electron microscope. The electrochemical and electrocatalytic properties of this film were characterized by cyclic voltammetry, linear sweep voltammetry, and square wave voltammetry (SWV). In 0.1 M phosphate buffer solution (pH 4.5), the modified electrode resolved the electrochemical response of DA, UA, G, and A into four well-defined voltammetric oxidation peaks by SWV; the oxidation peak current of DA, UA, G, and A increased 13-, 6-, 7-, and 9-fold, respectively, compared with those at the bare GCE and the SWV peak currents of DA, UA, G, and A with linear concentrations in the ranges of 0.1–50, 0.1–50, 0.1–50, and 0.1–60 μM, respectively. Based on this, a method for simultaneous determination of these species in mixture was setup. The detection limits were 10 nM for DA, 100 nM for UA, 8 nM for G, and 8 nM for A.  相似文献   

20.
Du M  Yang T  Ma S  Zhao C  Jiao K 《Analytica chimica acta》2011,(2):9921-174
Electrochemical activities of typically electrochemical targets at three kinds of modified carbon electrodes, i.e. carbon ionic liquid electrode (CILE), graphene/carbon paste electrode (CPE), and ionic liquid-functionalized graphene (IL-graphene)/CPE, were compared in detail. The redox processes of the probes at IL-graphene/CPE were faster than those at CILE and graphene/CPE from cyclic voltammetry. An electrochemical method for the simultaneous determination of guanine and adenine was described with detection limits of 6.5 × 10−8 mol L−1 (guanine) and 3.2 × 10−8 mol L−1 (adenine). Single A → G mutation of sequence-specific DNA could be discriminated by the IL-graphene/CPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号