首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of energy and charge transfer during chemical reactions on metals is of great importance for understanding the phenomena involved in heterogeneous catalysis. Despite extensive studies, very little is known about the nature of hot electrons generated at solid–liquid interfaces. Herein, we report remarkable results showing the detection of hot electrons as a chemicurrent generated at the solid–liquid interface during decomposition of hydrogen peroxide (H2O2) catalyzed on Schottky nanodiodes. The chemicurrent reflects the activity of the catalytic reaction and the state of the catalyst in real time. We show that the chemicurrent yield can reach values up to 10?1 electrons/O2 molecule, which is notably higher than that for solid–gas reactions on similar nanodiodes.  相似文献   

2.
A series of precipitants and commercial surfactants (soft templates) were employed to synthesize mesoporous/nano CeO2 by a hydrothermal method. As-prepared CeO2 was impregnated with palladium and employed for low-temperature catalytic oxidation of CO. It was found that both soft templates and precipitants had significant effects on the morphology, particle size, crystallinity, and porous structure of the CeO2, having a significant effect on the surface palladium abundance, molar ratios of surface species, and catalytic activity of the final impregnated Pd/CeO2. Using ammonia as precipitant could facilitate increased surface palladium abundance and surface molar ratios of PdO/Pd SMSI , Ce3+/(Ce3+ + Ce4+), and Osurface/Olattice. The catalytic activity of the final Pd/CeO2 catalysts could be enhanced as well. The optimal P123-assisted ammonia-precipitated Pd/CeO2 catalyst exhibited over 99% catalytic conversion of CO at 50 °C.  相似文献   

3.
《Comptes Rendus Chimie》2016,19(10):1363-1369
The dissolution of oxygen in palladium plays an important role in palladium catalysis. The present study shows that the surface modification (SM) due to the dissolution of atomic oxygen into the subsurfaces of palladium can be used as a control to tune its catalytic activity. CO oxidation and NO + H2 + O2 reaction was separately carried out on metallic Pd and on surface modified Pd using a molecular beam instrument and the results were compared. The metallic Pd does not show activity below 400 K for both reactions, whereas the SM-Pd shows activity at near-ambient temperatures. The electronic change due to SM was investigated using ambient pressure photoelectron spectroscopy, and the investigation clearly shows the effect of subsurface oxygen in the ambient temperature activity of palladium.  相似文献   

4.
The reaction mechanism of the selective catalytic reduction of NOx by propane in the presence of O2 on a commercial Ni-Cr oxide catalyst was studied using in situ IR spectroscopy. It was found that nitrite, nitrate, and acetate surface complexes occurred under reaction conditions. Considerable amounts of hydrogen were formed in the interaction of NO + C3H8 + O2 or C3H8 + O2 reaction mixtures with the catalyst surface. The rates of conversion of the surface complexes detected under reaction conditions were measured. The resulting values were compared to the rate of the process. It was found that, at temperatures lower than 200°C, nitrate complexes reacted with the hydrocarbon to form acetate complexes; in this case, the formation of reaction products was not observed. In the temperature region above 250°C, two reaction paths took place. One of them consisted in the interaction of acetate and nitrate complexes with the formation of reaction products. The decomposition of NO on the reduced surface occurred in the second reaction path. Nitrogen atoms underwent recombination, and oxygen atoms reoxidized the catalyst surface and reacted with the activated hydrocarbon to form CO2 and H2O in a gas phase.  相似文献   

5.
A Pd(II) Schiff base complex as an efficient and highly heterogeneous catalyst was developed by immobilization of a palladium complex on the surface of modified Fe3O4 magnetite nanoparticles. These surface‐modified nanoparticles were characterized using various techniques such as transmission electron microscopy, X‐ray diffraction, thermogravimetric analysis, vibrating sample magnetometry, elemental analysis and Fourier transform infrared spectroscopy. The palladium catalyst exhibited efficient catalytic activity in Suzuki and Heck coupling reactions. This method has notable advantages such as excellent chemoselectivity, mild reaction conditions, short reaction times and excellent yields. The yields of the products were in the range 85–100%. Also, the nanocatalyst can be easily recovered with a permanent magnet and reused at least five times without noticeable leaching or loss of its catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Comprehensive studies combining surface science and real catalyst were performed to get further insight into catalytic active site and reaction mechanism for NO decomposition over supported palladium and cobalt oxide-based catalysts. On palladium single-crystal model catalysts, adsorption, dissociation and desorption behavior of NO was found to be closely related to the surface structures, the stepped surface palladium being active for dissociation of NO. In accordance with this result, the activity of powder Pd/Al2O3 catalysts for NO decomposition was directly related to the number of step sites exposed on the surface, suggesting that the step sites act as the catalytic active site for NO decomposition on Pd/Al2O3. NO decomposition over cobalt oxide was found to be significantly promoted by addition of alkali metals. Surface science study and catalyst characterization led to the same conclusion that the interface between the alkali metal and Co3O4 serves as the catalytic active site. From the results of in situ Fourier transform infrared (FT-IR) spectroscopy and isotopic transient kinetic analysis, a reaction mechanism was proposed in which the reaction is initiated by NO adsorption onto alkali metals to form NO2 species and then NO2 species react with the adsorbed NO species to form N2 over the interface between the alkali metal and Co3O4.  相似文献   

7.
Transition metal ion-imidazole complexes have been immobilized on silica, silica–alumina (25%Al2O3), and alumina supports by adsorption and functionalization methods. The catalytic activity of these supported complexes in the decomposition of H2O2 has been studied. The reaction exhibits first-order kinetics with respect to [H2O2] and the quantity of catalyst. The rate of reaction decreases as [H2O2]0 increases. The order of catalytic reactivity is strongly dependent on the type of metal ion, support, and the immobilization method. The complex anchored via adsorption exhibited a higher activity compared to the corresponding complex anchored via functionalization of the surface. The reaction proceed via formation of the peroxo-intermediate, which has an inhibiting effect on the reaction rate. The reaction is enthalpy-controlled as is concluded from the isokinetic relationship. A mechanism is proposed involving the generation of HO2 radicals from the peroxo-intermediate in the rate-determining step.  相似文献   

8.
The combination of the d8 RhI diolefin amide [Rh(trop2N)(PPh3)] (trop2N=bis(5‐H‐dibenzo[a,d]cyclohepten‐5‐yl)amide) and a palladium heterogeneous catalyst results in the formation of a superior catalyst system for the dehydrogenative coupling of alcohols. The overall process represents a mild and direct method for the synthesis of aromatic and heteroaromatic carboxylic acids for which inactivated olefins can be used as hydrogen acceptors. Allyl alcohols are also applicable to this coupling reaction and provide the corresponding saturated aliphatic carboxylic acids. This transformation has been found to be very efficient in the presence of silica‐supported palladium nanoparticles. The dehydrogenation of benzyl alcohol by the rhodium amide, [Rh]N, follows the well established mechanism of metal–ligand bifunctional catalysis. The resulting amino hydride complex, [RhH]NH, transfers a H2 molecule to the Pd nanoparticles, which, in turn, deliver hydrogen to the inactivated alkene. Thus a domino catalytic reaction is developed which promotes the reaction R‐CH2‐OH+NaOH+2 alkene→R‐COONa+2 alkane.  相似文献   

9.
Summary The complex cation [Cu(NH3)4]2+ has been sorbed on to two different supports: zirconium phosphate and zirconium phenylphosphonate, and the products characterized by elemental analysis, FTIR, e.s.r., reflectance spectra, t.g.a. and surface area measurements (BET method). The catalytic activity of these materials has been studied through the disproportionation of H2O2. The kinetic data and calculated energy of activation show that the complex cation, supported on zirconium phenylphosphonate, exhibits enhanced catalytic activity.Author to whom all correspondence should be directed.  相似文献   

10.
Summary Dowex 50 W resin in the form of an ethylamine-Cu11 complex ion was used as potentially active catalyst for the decomposition of H2O2 in aqueous medium. The stoichiometry of the amine-Cu11 complex on the resin, determined experimentally, was found to have the total [Cu2+]: [ethylamine]=14 concentration ratio. The kinetics of the decomposition was studied and the calculated rate constant (per g of dry resin) was found to decrease with increase the degree of resin crosslinking. The active species, formed as an intermediate at the beginning of the reaction, had an inhibiting effect on the reaction rate. The brown peroxo-copper complex formed as a result of H2O2 decomposition, was found to contain the catalytic active species. The order of the reaction increased with decreasing initial H2O2 concentration, a sign of a step-wise mechanism. A quantitative treatment of the decomposition of H2O2 was provided in terms of activation parameters.  相似文献   

11.
Catalytic pathways for the reduction of dioxygen can either lead to the formation of water or peroxide as the reaction product. We demonstrate that the electrocatalytic reduction of O2 by the pyridylalkylamine copper complex [Cu(tmpa)(L)]2+ in a neutral aqueous solution follows a stepwise 4 e?/4 H+ pathway, in which H2O2 is formed as a detectable intermediate and subsequently reduced to H2O in two separate catalytic reactions. These homogeneous catalytic reactions are shown to be first order in catalyst. Coordination of O2 to CuI was found to be the rate‐determining step in the formation of the peroxide intermediate. Furthermore, electrochemical studies of the reaction kinetics revealed a high turnover frequency of 1.5×105 s?1, the highest reported for any molecular copper catalyst.  相似文献   

12.
采用周期性密度泛函理论研究了H2和O2在Pd(111),Pd(100)及Pd(110)表面上直接合成H2O2的反应机理,对反应的主要基元步骤进行了计算和分析.结果表明,Pd(111)表面对H2O2直接合成的催化选择性最好,表面原子密度较低的Pd(100)表面和Pd(110)表面上含有O-O键的表面物种解离严重,不利于H2O2的生成.H2O2的选择性与含有O-O键表面物种的O-O键能和表面物种的结合能有关.含有O-O键的表面物种在表面的结合能越大,越容易发生解离,不利于形成H2O2.  相似文献   

13.
Clays are nontoxic, inexpensive, abundant, and have great potential as catalytic carriers because of their special structure, surface, and suitability for supporting transition metals. In this study, sepiolite was used as a ligand for the heterogenization of palladium chloride on Fe3O4 nanoparticle surface as a novel, high temperature stable, and recoverable green catalyst (Fe3O4@sepiolite-Pd2+). The catalytic activity of this system was tested in the reduction of nitroarene compounds and the Suzuki cross-coupling reaction. The catalyst structure was characterized using spectroscopic data and magnetic and thermal techniques such as Fourier transform infrared, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction, vibrating sample magnetometer (VSM), and thermogravimetric analysis.  相似文献   

14.
Hydrogen peroxide (H2O2) was the main types of many peroxides produced in living mammalian cells that consumed oxygen. In the brain, the main source of H2O2 was the superoxide dismutase (SOD)‐catalyzed reaction in mitochondria. However, the level of H2O2 would be elevated through administration of control drugs and alcohol by dopamine metabolism of monoamine oxidase. In this study, a H2O2 microsensor was used to investigate the level of H2O2 in the brain striatum after administration of methamphetamine (MAP), morphine (MrP) or ethanol (Eth). The placement of microsensor in the brain was done at coordinates A/P 1.1 from bregma, M/L+2.6 and D/V‐1.5. A working potential of +0.05 V vs. Ag/AgCl was applied. The H2O2 concentration was measured direct from the current generated by its catalytic reaction at the electro active surface of the electrode. A significant increase of H2O2 level was observed after 7 successive injections of the controlled drugs or alcohol. The initial measurement of H2O2 is essential as excess dosage of H2O2 during treatment will contribute to the formation of neurotoxin oxygenated radicals. The H2O2 was the precursor of O2? and OH radicals. Thus, this study provided a mean to monitor H2O2 level in the brain.  相似文献   

15.
A palladium-based catalytic system is highly active in the synthesis of γ-keto acids of type ArCOCH2CH2COOH via carbonylation-decarboxylation of the corresponding α-chloride. Typical reaction conditions are: P(CO) = 20–30 atm; substrate/H2O/Pd = 100–400/800–1000/1 (mol); temperature: 100–110 °C; [Pd]=0.25 × 10−2−1 × 1O−2 M; solvent: acetone; reaction time: 1–2 h. A palladium(II) complex can be used as catalyst precursor. Under the reaction conditions above, reduction of the precursor to palladium metal occurs to a variable extent. High catalytic activity is observed when the precursor undergoes extensive decomposition to the metal. Pd/C is also highly active. Slightly higher yields are obtainable when the catalytic system is used in combination with a ligand such as PPh3. A mechanism for the catalytic cycle is proposed: (i) The starting keto chloride undergoes oxidative addition to reduced palladium with formation of a catalytic intermediate having a Pd-[CH(COOH)CH2COPh] moiety. The reduced palladium may be the metal coordinated by other atoms of palladium and/or by carbon monoxide and/or by a PPh3 ligand when catalysis is carried out in the presence of this ligand. It is also proposed that the keto group in the β-position with respect to the carbon atom bonded to chlorine weakens the CCl bond, easing the oxidative addition step and enhancing the activity of the catalyst. (ii) Carbon monoxide ‘inserts’ into the PdC bond of the above intermediate to give an acyl catalytic intermediate having a Pd-[COCH(COOH)CH2COPh] moiety. (iii) Nucleophilic attack of H2O to the carbon atom of the carbonyl group bonded to the metal of the acyl intermediate yields a malonic acid derivative as product intermediate. This, upon decarboxylation, gives the final product. Alternatively, the desired product may form without the malonic acid derivative intermediate, through the following reaction pathway: the acyl intermediate undergoes decarboxylation with formation of a different acyl intermediate, having a Pd-[CO-CH2CH2COPh] moiety, which, upon nucleophilic attack of H2O on the carbon atom of the carbonyl group bonded to the metal, yields the final product.  相似文献   

16.
The catalytic activity of low-percentage Co,Pd systems on ZSM-5, ERI, SiO2, and Al2O3 supports in the oxidation of CO was studied. The activity of bimetal-containing catalysts was shown to depend on the nature of the catalyst and the amount and ratio of their active components. According to the results of thermoprogrammed reduction with H2 (H2 TPR) and X-ray photoelectron spectroscopy (XPS) data, the metals are distributed as isolated cations or Coδ+-O-Pdδ+ clusters with cobalt and palladium cations surrounded by off-lattice oxygen in Co,Pd systems. The 0.8% Co,0.5% Pd-ZSM-5 bimetal catalysts were found to be more active due to the presence of clusters.  相似文献   

17.
The interaction of oxygen of water and central oxygen of ozone produces stable H2O‐O3 complex with no barrier. With decomposition of this complex through H‐abstraction by O3 and O‐abstraction by H2O, four possible product channels have been found. The reaction of mercury and the products of water‐ozone reaction have been studied. All geometrical and AIM parameters of intermediate, transition states, and the products of reactions are calculated and thermodynamic parameters are obtained. The negative value of free energy show that channels Hg+H2OO, Hg+H2O2 and Hg+H2O4 in hydrogen tetroxide form (HTO) may be the main reaction channels.  相似文献   

18.
Ion exchange resins are widely used in the field of nuclear industry. The present work aimed at the development of a method for complete decomposition of cation exchange resins with H2O2 in the presence of Fe3+ ion. The decomposition reaction proceeded at ambient temperature and decomposition time was greatly shortened with increasing concentration of Fe3+ ion rather than that of H2O2. The catalytic action of Fe3+ ion was suppressed with increase of HNO3 concentration. As much as 4 g of the air-dried resin could be decomposed with 8 ml of 30% H2O2, and the use of about 60 ml of 30% H2O2 resulted in the complete decomposition of organic carbon to CO2. Absence of any orgnaic carbon in the residual solution will simplify the final disposal.  相似文献   

19.
Characteristics of the kinetics of the oxidation of carbon monoxide on acetylacetonates of palladium and platinum immobilized on a silica surface have been studied. The bound metal complexes show no hysteresis in the dependence of the rate of reaction on the concentration of CO and O2 and have a higher catalytic activity than Pt/SiO2 and Pd/SiO2. A mechanism is proposed for the oxidation of carbon monoxide on platinum and palladium complexes bound to a SiO2 surface.  相似文献   

20.
A series of studies of hydrocarbon oxidation by the O2 + H2 mixture in the presence of catalytic systems based on Pt or Pd and a heteropoly compound (HPC) is reviewed. The catalytic systems were prepared from Pd(II) complexes with the heteropoly tungstate anions PW11O 29 7? and PW9O 34 9? , the complex salt [Pt(NH3)4][H2Mo12O40]2 · 7H2O, mixtures of H2PtCl4 or H2PtCl6 with H3 + n PMo12 ? n V n O40 (n = 0–3) heteropoly acids, or supported platinum dispersed in HPC solutions. The interaction of metal ions and particles with HPCs in the initial state and after thermal and redox treatments was investigated by NMR, IR spectroscopy, XPS, EXAFS, HREM, and TPR. The catalytic systems were tested in the liquid-phase oxidation of alkanes, cyclohexane, cycloalkenes, benzene, toluene, and phenol with the O2 + H2 mixture at low temperatures. Effective supported catalysts based on platinum nanoparticles associated with the redox-active HPCs H3PMo12O40 and H4PMo11VO40 were prepared for gas-phase benzene oxidation into phenol. The oxidation mechanism includes the interaction between dioxygen and platinum (or palladium) and the participation of the HPC in the formation of active oxygen species of radical nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号