首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

2.
The authors report the first theoretical study on the hexa-atomic molecules CAl(4)X (X=Si,Ge) at the B3LYP/6-311++G(2d), MP2/6-311++G(2d), and CCSD(T)/6-311++G(3df) (single point) levels. Three low-lying isomers (within 2.0 kcal/mol) can be formally viewed as constructed by one Al+ interacting with the planar CAl3X- at the side Al-X bond (X-1), side Al-Al bond (X-2), and central C atom (X-3). The isomers X-1 and X-2 both have planar structures that include the planar tetracoordinate carbon, aluminum, and silicon/germanium, while the three-dimensional isomer X-3 has the pentacoordinate carbon. The planarity of X-1 and X-2 is ascribed to the ligand five-center two-electron bonding molecular orbital, similar to the orbital responsible for the planarity of CAl3X- (X=Si,Ge). Kinetically, the two planar structures X-1 and X-2 can be easily interconverted to each other via the intermediate X-3, indicative of their coexistence. Of particular interest, isomer X-1 represents the first example that simultaneously contains three types of planar centers in a single molecule, to the best of our knowledge. The three low-lying and structurally interesting isomers X-1, X-2, and X-3 await future experimental verification. The present results could enrich the planar chemistry.  相似文献   

3.
采用密度泛函方法B3LYP和耦合簇方法CCSD分别在6-311+G(d,p)水平上对BH4+、BH4和BH4−的构型进行全优化, 并从量子拓扑学的角度对各稳定构型进行电子密度拓扑分析. 研究表明, BH4+、BH4和BH4−分别具有C2v、C2v和Td对称性. BH4+和BH4中都存在B—H键、H—H键和原子-分子键;而BH4−中存在着四个相同的B—H键;BH4中含有未成对电子, 其主要围绕B原子运动.  相似文献   

4.
The properties of single-sheet [n]graphanes, their double-layered forms (diamondoids), and their van der Waals (vdW) complexes (multilayered [n]graphanes) were studied for n = 10-97 at the dispersion-corrected density functional theory (DFT) level utilizing B97D with a 6-31G(d,p) basis set; for comparison, we also computed a series of structures at M06-2X/6-31G(d,p) as well as B3LYP-D3/6-31G(d,p) and evaluated SCS-MP2/cc-pVDZ single-point energies. The association energies for the vdW complexes reach 120 kcal mol(-1) already at 2 nm particle size ([97]graphane dimer), and graphanes adopt layered structures similar to that of graphenes. The association energies of multilayered graphanes per carbon atom are rather similar and independent of the number of layers (ca. 1.2 kcal mol(-1)). Graphanes show quantum confinement effects as the HOMO-LUMO gaps decrease from 8.2 eV for [10]graphane to 5.7 eV for [97]graphane, asymptotically approaching 5.4 eV previously obtained for bulk graphane. Similar trends were found for layered graphanes, where the differences in the electronic properties of double-sheet CH/σ vdW and double-layered CC/σ diamondoids vanish at particles sizes of 1 nm. For comparison, we studied the parent CC/π systems, i.e., the single- and double-sheet [n]graphenes (n = 10-130) for which the association energies demonstrate the same trends as in the case of [n]graphanes; in both cases the band gaps decrease with an increase in system size. The [112]graphene dimer (HOMO-LUMO gap = 0.5 eV) already approaches the 2D metallic properties of graphite.  相似文献   

5.
Postulated conformers of trifluoromethylated β-aminoenones stabilized by intramolecular NH?O and N?HO bonds were studied by IR and NMR spectroscopy and evaluated with quantum chemical calculations (B3LYP/6-311+G(d,p), MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) and MP2/6-31G(d,p)) and NBO analysis. The influence of the nature of EWG, substituents at the nitrogen atom and double bond, and of orbital interactions of heteroatoms and double bonds in these structures on the proton affinity of basic and acid centers, strength of hydrogen bonds, and the energy of tautomeric transfers is discussed. The theoretical results agree satisfactorily with the experimental observations.  相似文献   

6.
The equilibrium molecular structure of the octatetranyl anion, C8H(-), which has been recently detected in two astronomical environments, is investigated with the aid of both ab initio post-Hartree-Fock and density functional theory (DFT) calculations. The model chemistry adopted in this study was selected after a series of benchmark calculations performed on molecular acetylene for which accurate gas-phase structural data are available. Geometry optimizations performed at the CCSD/6-311+G(2d,p), QCISD/6-311+G(2d,p), and MP4(SDQ)/6-311+G(2d,p) levels of theory yield for C8H(-) an interesting polyyne-type structure that defies the chemical formula displaying a simple alternation of triple and single carbon-carbon bonds, [:C[triple bond]C-C[triple bond]C-C[triple bond]C-C[triple bond]CH](1-). In the optimized geometry of C8H(-), as one proceeds from the naked carbon atom on one side of the chain to the CH unit on the opposite side of the chain, the short (formally triple) carbon-carbon bonds decrease in length from 1.255 to 1.213 A whereas the long (formally single) carbon-carbon bonds increase (albeit only slightly) in length from 1.362 to 1.378 A (CCSD results). In striking contrast, both MP2 and DFT (B3LYP and PBE0) calculations fail in reproducing the pattern of the carbon-carbon bond lengths obtained with the CCSD, QCISD, and MP4 methods. The structures of three shorter n-even chains, C(n)H(-) (n = 2, 4, and 6), along with those of four n-odd compounds (n = 3, 5, 7, and 9) are also investigated at the CCSD/6-311+G(2d,p) level of theory.  相似文献   

7.
The structural properties of the three open chain C4H8O4 sugars, i.e. two aldoses (erythrose and threose) and one ketose (erythrulose), have been investigated by DFT and ab initio calculations to get accurate structures and relative energies. The structure of all the conformers predicted within 10 kJ/mol has been optimized at the B3LYP/6-311++G(d,p) level of the theory. Two types of intramolecular hydrogen bonds have been clearly identified. They are related to the hydroxyl and to the carbonyl oxygen atoms and are of weak and middle strength, respectively. The most stable structures have been optimized at the B3LYP/6-311++G(2df,p) and at the MP2/6-311++G(2df,p) levels of the theory in order to calculate accurate rotational parameters and dipole moment for their future detection in the microwave range in the gas phase. Their corresponding harmonic IR spectra have also been calculated and their fingerprint signature is discussed in the region of the OH stretching vibrations, of the torsion of the C–O bonds and of the deformation of the C–C skeleton.  相似文献   

8.
在HF/6-311G(d,p)、 MP2/6-311G(d,p)和B3LYP/6-311G(d,p)水平上,对H2CO和CH3CN以及设计的4种结构H2CO…CH3CN复合物等进行几何全优化和振动频率计算,排除振动频率为负值的非局域极小点结构,并对稳定的环状构型复合物结合能进行基组重叠误差校正和零点振动能校正.分子间相互作用的能量分解分析显示,静电能在H2CO...CH3CN相互作用能量中占主导地位,电荷转移能居第二位.  相似文献   

9.
Isoelectronic molecules regarding B6H10, 2-CB5H9, 2,3-C2B4H8, 2,3,4-C3B3H7, and 2,3,4,5-C4B2H6 are studied by the density functional B3LYP/6-311G(d,p) method and the electron propagator theory in the partial third-order quasiparticale approximation, as well as the extrapolated calculation with the coupled-cluster CCSD(T) theory. The calculated ionization potentials are in good agreement with the experimental data from photoelectron spectroscopy. Valence structures are characterized with natural orbital bond (NBO) theory, exhibiting the multiple three-center two-electron bonds B-H-B, B-B-B, C-B-B, B-C-B, and C-B-C, and chemical bond rearrangements in the cations.  相似文献   

10.
Ab initio molecular orbital theory with the 6-31G(d), 6-31G(d,p), 6-31+G(d), 6-31+G(d,p), 6-31+G(2d,p), 6-311G(d), 6-311G(d,p), and 6-311+G(2d,p) basis sets and density functional theory (BLYP, B3LYP, B3P86, B3PW91) have been used to locate transition states involved in the conformational interconversions of 1,4-dithiacyclohexane (1,4-dithiane) and to calculate the geometry optimized structures, relative energies, enthalpies, entropies, and free energies of the chair and twist conformers. In the chair and 1,4-twist conformers the C-Hax and C-Heq bond lengths are equal at each carbon, which suggest an absence of stereoelectronic hyperconjugative interactions involving carbon-hydrogen bonds. The 1,4-boat transition state structure was 9.53 to 10.5 kcal/mol higher in energy than the chair conformer and 4.75 to 5.82 kcal/mol higher in energy than the 1,4-twist conformer. Intrinsic reaction coordinate (IRC) calculations showed that the 1,4-boat transition state structure was the energy maximum in the interconversion of the enantiomers of the 1,4-twist conformer. The energy difference between the chair conformer and the 1,4-twist conformer was 4.85 kcal/mol and the chair-1,4-twist free energy difference (deltaG degrees (c-t)) was 4.93 kcal/mol at 298.15 K. Intrinsic reaction coordinate (IRC) calculations connected the transition state between the chair conformer and the 1,4-twist conformer. This transition state is 11.7 kcal/mol higher in energy than the chair conformer. The effects of basis sets on the 1,4-dithiane calculations and the relative energies of saturated and unsaturated six-membered dithianes and dioxanes are also discussed.  相似文献   

11.
The multidimensional Conformational Potential Energy Hypersurface (PEHS) of cyclotrisarcosyl was comprehensively investigated at the DFT (B3LYP/6-31G(d), B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p)), levels of theory. The equilibrium structures, their relative stability, and the Transition State (TS) structures involved in the conformational interconversion pathways were analyzed. Aug-cc-pVTZ//B3LYP/6-311++G(d,p) and MP2/6-31G(d)//B3LYP/6-311++G(d,p) single point calculations predict a symmetric cis-cis-cis crown conformation as the energetically preferred form for this compound, which is in agreement with the experimental data. The conformational interconversion between the global minimum and the twist form requires 20.88 kcal mol-1 at the MP2/6-31G(d)//B3LYP/6-311++G(d,p) level of theory. Our results allow us to form a concise idea about the internal intricacies of the PEHSs of this cyclic tripeptide, describing the conformations as well as the conformational interconversion processes in this hypersurface. In addition, a comparative analysis between the conformational behaviors of cyclotrisarcosyl with that previously reported for cyclotriglycine was carried out  相似文献   

12.
The reaction of acetonitrile with hydroxyl has been studied using the direct ab initio dynamics methods. The geometries, vibrational frequencies of the stationary points, as well as the minimum energy paths were computed at the BHandHLYP and MP2 levels of theory with the 6-311G(d, p) basis set. The energies were further refined at the PMP4/6-311+G(2df, 2pd) and QCISD(T)/6-311+G(2df, 2pd) levels of theory based on the structures optimized at BHandHLYP/6-311G(d, p) and MP2/6-311G(d, p) levels of theory. The Polyrate 8.2 program was employed to predict the thermal rate constants using the canonical variational transition state theory incorporating a small-curvature tunneling correction. The computed rate constants are in good agreement with the available experimental data.  相似文献   

13.
用密度函数理论B3LYP方法和6-31G(d,p),6-311G(d,p)及6-311+G(d,p)基组,分别对1-C4H^+~8,2-C4H^+~8和C4H^+~10进行了构型优化和频率分析计算,预言1-C4H^+~8具有非平面构型,与以往报道的从头算和密度函数理论计算结果不同。在各自由基阳离子的B3LYP构型上,进行了B3LYP、MP2及MRSDCI方法的超精细偶合常数计算,得到了比以往更好的结果,特别是MP2/B3LYP计算值是至今与实验值符合得最好的理论计算结果。  相似文献   

14.
采用密度泛函理论B3LYP方法, 在B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(d,p)基组水平上对乙醇-水分子团簇(C2H5OH(H2O)n (n=1-9))的各种性质进行研究, 如: 优化的几何构型、结构参数、氢键、结合能、平均氢键强度、自然键轨道(NBO)电荷分布、团簇的生长规律等. 结果表明, 从二维(2-D)环状结构到三维(3-D)笼状结构的过渡出现在n=5的乙醇-水分子团簇中. 此外, 利用团簇结合能的二阶差分、形成能、能隙等性质, 发现在n=6时乙醇-水分子团簇的最低能量结构稳定性较好, 可能为幻数结构. 最后, 为了进一步探讨氢键本质, 将C2H5OH(H2O)n (n=2-9)最低能量结构的各种性质与纯水分子团簇(H2O)n (n=3-10)比较, 结果表明前者与后者中的水分子之间氢键相似.  相似文献   

15.
The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.  相似文献   

16.
The structural and vibrational properties of the transition state of the N(2)O + X (X = Cl,Br) reactions have been characterized by ab initio methods using density functional theory. We have employed Becke's hybrid functional (B3LYP), and transition state optimizations were performed with 6-31G(d), 6-311G(2d,2p), 6-311+G(3d,2p), and 6-311+G(3df,2p) basis sets. For the chlorine atom reaction the coupled-cluster method (CCSD(T)) with 6-31G(d) basis set was also used. All calculations resulted in transition state structures with a planar cis arrangement of atoms for both reactions. The geometrical parameters of transition states at B3LYP are very similar, and the reaction coordinates involve mainly the breaking of the N-O bond. At CCSD(T)/6-31G(d) level a contribution of the O-Cl forming bond is also observed in the reaction coordinate. In addition, several highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction energetics. All model chemistries predict exothermic reactions. The G3 and G2 methods result in the smallest deviations from experiment, 1.8 and 0 kcal mol(-1), for the enthalpies of reaction for N(2)O reaction with chlorine and bromine, respectively. The G3//B3LYP and G1 methods perform best among the composite methods in predicting energies of the transition state, with a deviation of 1.9 and 3.0 kcal mol(-1), respectively, in the activation energies for the above processes. However, the B3LYP/6-311+G(3df,2p) method gives smaller deviations of 0.4 and -1.0 kcal mol(-1), respectively. The performance of the methodologies applied in predicting transition state energies was analyzed.  相似文献   

17.
采用密度泛函方法B3LYP/6-311+G(d, p)和耦合簇方法CCSD/6-311+G(d, p)研究了BH2+与H2O的气相离子-分子反应机理. 优化得到了反应途径中各驻点的几何构型, 并采用内禀反应坐标法进行追踪. 从量子拓扑学的角度, 讨论了在反应过程中各化学键的变化. 反应(I)经历了一个四元环过渡态, 找到了这个反应的能量过渡态和两个结构过渡态.  相似文献   

18.
The hydrogen bonding interaction of 1:1 dimer formed between HNO and HArF molecule has been completely investigated in the present study using Second-order M?ller-Plesset Perturbation (MP2) method in conjunction with 6-311+G**, 6-311++G** and 6-311++G(2d,2p) basis sets. The standard and CP-corrected calculations have been employed to determine the equilibrium structures, the vibrational frequencies and interaction energies. The interaction energies of the dimers were also calculated at G2MP2 level. Two stable structures are found as the minima. Dimer I(H···F)is a five-membered cyclic hydrogen bonded structure and is more stable than the Dimer II(H···O). The blue-shifted N-H···F hydrogen bond is confirmed with standard and CP-corrected calculations by the MP2 and DFT methods in conjunction with different basis sets. The results obtained at MP2 in conjunction with different basis sets show there is a red-shifted hydrogen bond (Ar-H···O) in the Dimer II(H···O). The topological and electronic properties, the origin of red- and blue-shifted hydrogen bonds were investigated at MP2/6-311++G(2d,2p) with CP corrected calculations. From the NBO analysis, the reasonable explanations for the red- and blue-shifted hydrogen bonds were proposed.  相似文献   

19.
Ab initio and density functional theory (DFT) calculations using the GAUSSIAN 94 program have been performed to investigate the molecular structures of HNSi and HSiN in the ground state as well as the transition state for the HNSi–HSiN isomerization reaction at the 6-311G(d,p), 6-311+G(2d,p) and 6-311+G(2df,p) basis sets. The results show that DFT calculations at higher levels of theory reproduce experimental vibrational frequencies of both HNSi and HSiN better than ab initio methods including electron correlation effects. Those calculated geometries are accurate enough to predict the rotational constant of HNSi. The barrier height for the isomerization reaction is found to be about 10 kcal/mol.  相似文献   

20.
The structure and energetics of cyclic BAl2Hnm (n=3-6, m=-2 to +1), calculated at the B3LYP/6-311+G** and QCISD(T)/6-311++G** levels, are compared with their corresponding homocyclic boron and aluminium analogues. Structures in which the boron and aluminium atoms have coordination numbers of up to six are found to be minima. There is a parallel between structure and bonding in isomers of BAl2H(3)2- and BSi2H3. The number of structures that contain hydrogens out of the BAl2 ring plane is found to increase from BAl2H3(2-) to BAl2H6+. Double bridging at one bond is common in BAl2H5 and BAl2H6+. Similarly, species with lone pairs on the divalent boron and aluminium atoms are found to be minima on the potential energy surface of BAl2H(3)2-. BAl2H4- (2 b) is the first example of a structure with planar tetracoordinate boron and aluminium atoms in the same structure. Bridging hydrogen atoms on the B--Al bond prefer not to be in the BAl2 plane so that the pi MO is stabilised by pi-sigma mixing. This stabilisation increases with increasing number of bridging hydrogen atoms. The order of stability of the individual structures is decided by optimising the preference for lower coordination at aluminium, a higher coordination at boron and more bridging hydrogen atoms between B--Al bonds. The relative stabilisation energy (RSE) for the minimum energy structures of BAl2Hnm that contain pi-delocalisation are compared with the corresponding homocyclic aluminium and boron analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号