首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Results from investigating the effect of thermomechanical processing on the thermal stability of amorphous Fe-B alloys are presented. It is shown that the combined thermomechanical processing of amorphous alloys raises the temperature of intense crystallization onset by 80 K for binary alloys; by 20–50 K, for multicomponent alloys. The greater expansion of the thermal stability interval of binary alloys relative to multicomponent alloys is explained by the presence of alloying dopants such as molybdenum, nickel, and silicon that inhibit the diffusion of boron and thus hinders nucleation and the growth of the crystalline phase. The enhanced thermal stability of amorphous alloys induced by thermomechanical processing is explained by the reduction in size of amorphous-phase frozen crystallization centers and by the formation of a nanostructured state.  相似文献   

2.
The temperature dependence of the volume fraction of the crystalline phase in Fe80B20 amorphous alloy is calculated using equations from the homogeneous nucleation theory of binary systems. It is shown that the crystallization of Fe80B20 alloy is two-stage, as is confirmed by the experimental data obtained by means of highly sensitive dilatometry and X-ray diffractometry. On the basis of results of calculations performed within the theory of the high-temperature stability of amorphous alloys, two areas of its practical application are proposed: (i) enhancing the thermal stability of amorphous alloys by isothermal annealing in the range of temperatures where crystalline nuclei can transition to the amorphous phase; (ii) controlled nanostructuring of the amorphous state with different modes of treatment. Methods are proposed for obtaining the nanostructured state from the initial amorphous state. Alloys in the nanocrystalline state are obtained, as is confirmed by the results from electron microscope investigations.  相似文献   

3.
稀土(Y、Ce、Sm)对Ni-P非晶态合金热稳定性的影响   总被引:11,自引:0,他引:11  
用差示扫描量热法(DSC)研究了非晶态合金Ni-RE-P(RE=Y, Ce, Sm,下同)的热稳定性; 用X-光衍射(XRD)和扫描电镜(SEM)检测了在不同温度范围处理的样品的结构变化. 结果表明, 向非晶态Ni-P合金中加入少量稀土元素(Y, Ce, Sm), 可显著提高非晶态Ni-RE-P合金的热稳定性.样品的晶化激活能数据表明, Ni-RE-P的各转变阶段的激活能都比Ni-P的大, 说明Ni-RE-P比Ni-P更难晶化, 即Ni-RE-P比Ni-P更稳定.  相似文献   

4.
Differential scanning calorimetry (DSC) and X-ray diffraction techniques were used to study the crystallization kinetics of Al91La5Ni4 amorphous alloys prepared by a rapid quenching method. The experimental results showed that the thermal treatment of the melt — temperature regime and exposure time — had a significant effect on the crystallinity of the ribbons prepared by rapid quenching, and hence on the crystallization kinetics of the ribbon alloys in the annealing process.  相似文献   

5.
The thermal stability, kinetics and glass forming ability of an Fe77C5B4Al2GaP9Si2 bulk amorphous alloy have been studied by differential scanning calorimetry. The activation energy, frequency factor and rate constant corresponding to the multiple crystallization steps were determined by the Kissinger method. X-ray diffraction and transmission electron microscopy studies revealed that the crystallization starts with the primary precipitation of α-Fe from the amorphous matrix. The kinetics of nucleation of the α-Fe nanoparticles was investigated by two different methods, i.e. isothermal annealing and continuous heating after partial annealing.  相似文献   

6.
李翔  严彪  董鹏 《电化学》2009,15(3):269
应用单辊甩带法制备非晶态Fe78Si13B9和Fe73.5Si13.5B9Nb3Cu1薄带,并以非晶晶化退火法制备出纳米晶Fe73.5Si13.5B9Nb3Cu1薄带.利用X射线衍射(XRD)仪和示差扫描量热计(DSC)对该非晶薄带的非晶特性及其晶化过程进行了研究.并用电化学极化曲线的方法和电化学阻抗技术研究了非晶态Fe78Si13B9和纳米晶Fe73.5Si13.5B9Nb3Cu1合金在1mol/LNaOH溶液里的电化学腐蚀行为,用SEM对极化测试后的试样形貌进行了观察;同时还研究了不同的热处理温度对材料结构及在1mol/LNaOH溶液里耐腐蚀性能的影响.结果表明,该非晶薄带的晶化过程分为两步;纳米晶比非晶合金的耐腐蚀性要好;且随着热处理温度的升高,非晶和纳米晶的耐腐蚀性能都得到提高.  相似文献   

7.
NiB和NiP超细非晶合金的退火晶化行为及催化性能   总被引:9,自引:0,他引:9  
 采用X射线吸收精细结构(XAFS),X射线衍射(XRD)和差热分析(DTA)等方法研究了以化学还原法制备的NiB和NiP超细非晶态合金催化剂在退火过程中的结构变化.XRD结果表明,在300℃下退火时,NiB超细非晶态合金晶化生成纳米晶Ni3B亚稳物相,NiP超细非晶态合金则主要晶化生成金属Ni和部分晶态Ni3P的混合物相;在500℃退火且近于完全晶化的条件下,大部分超细非晶态合金都晶化为金属Ni.XAFS结果定量地说明,对于NiB和NiP初始样品,第一近邻Ni-Ni配位的平均键长Rj分别为0.274和0.271nm,其结构无序度σS很大,分别为0.033和0.028nm,其热无序度σT分别为0.0069和0.0060nm.300℃退火后,晶化生成的Ni3B的Ni-Ni配位的σS降低到初始样品的33%,仅为0.011nm.500℃退火后,NiB样品的结构参数与金属Ni基本一致,但NiP样品的Ni-Ni配位的σS还远大于σT,仍为0.0125nm,表明NiB和NiP超细非晶态合金的退火晶化行为有很大的差别.纳米晶Ni3B催化苯加氢反应的转化率比超细Ni-B非晶态合金或多晶金属Ni更高,表明纳米晶Ni3B中的Ni与B原子组成了苯加氢催化反应的活性中心.  相似文献   

8.
Starting from calcium sulfate (gypsum) as fermentation by‐product of lactic acid production process, high performance composites have been produced by melt‐blending polylactide (PLA, L/D isomer ratio of 96:4) and β‐anhydrite II (AII) filler, that is, calcium sulfate hemihydrate previously dehydrated at 500 °C. Characterized by attractive mechanical and thermal properties due to good filler dispersion throughout the polyester matrix, these composites are interesting for potential use as biodegradable rigid packaging. Physical characterization of selected composites filled with 20 and 40 wt % AII has been performed and compared to processed unfilled PLA with similar amorphous structure. State of dispersion of the filler particles and interphase characteristic features have been investigated using light microscopy (LM) and scanning electron microscopy (SEM). Addition of AII did not decrease PLA thermal stability as revealed by thermogravimetry analyses (TGA) and allowed reaching a slight increase of PLA crystallizability during melt crystallization and upon heating from the glassy, amorphous state (DSC). It was found by thermomechanical measurements (DMTA) that the AII filler increased pronouncedly storage modulus (E′) of the composites in comparison with PLA in a broad temperature range. The X‐ray investigations showed stable/unchanged crystallographic structure of AII during processing with molten PLA and in the composite system. The notable thermal and mechanical properties of PLA–AII composites are accounted for by the good filler dispersion throughout the polyester matrix confirmed by morphological studies, system stability, and favorable interactions between components. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2770–2780, 2007  相似文献   

9.
The crystallization behaviour of amorphous melt spun Fe82?x?yCr18ZrxBy (x=0–8, y=10–20) ribbons have been investigated using differential scanning calorimetry. The crystallization temperature and crystallization behaviour change with varzing Zr and B content. The microstructural development during annealing of amorphous Fe64Cr18Zr8B10 has been investigated by a combination of transmission electron microscopy and energy dispersive X-ray microanalysis. Isothermal annealing for 2 h at temperatures in the range 600–1000°C produces a variety of different microstructures depending on the annealing temperature. At 600°C, the amorphous alloy partially crystallizes to a form a microstructure consisting of 9 nm sized bee ferrite grains embedded in an amorphous matrix. At temperatures in the range 700–900°C, the alloy microstructure transforms into a mixture of bee ferrite, faulted fcc MB12 boride particles and tetragonal M3B boride particles. At 1000°C, the faulted fcc MB12 boride particles are replaced by orthorhombic M4B boride particles.  相似文献   

10.
The effects of temperature on the molecular mobility in the amorphous phase and on the structural parameters of the crystalline phase of three brands of polylactide have been studied. It was found that annealing increases the melting temperature by 2–3°C and increases the degree of crystallinity by 2–6%. X-Ray analysis showed the possibility of formation of crystal structures of the α and β modifications in polylactide. The change in correlation time of radical rotation in amorphous regions of polylactide as a function of the history of thermal pretreatment of the samples was shown via the electron paramagnetic resonance method.  相似文献   

11.
Hydrogen sorption properties and some corresponding changes in the crystallization of amorphous TM33Zr67 (TM=Fe, Co, Ni) alloys have been investigated. Relatively large amount of hydrogen was found to dissolve into the amorphous alloys during electrochemical hydrogen charging. The microstructural evolution during annealing of H-charged Ni33Zr67 was studied as well. The weaker bonded hydrogen desorbs in a large temperature range (440–625 K) before the crystallization of the amorphous alloys to start. A hydride phase (ZrH2) was found to form during annealing the H-charged amorphous Ni33Zr67 alloy. During heating at constant heating rate the hydride decomposes at about 715 K and formation of Zr2Ni immediately takes place. The final microstructure of the Zr2Ni, crystallized from the H-charged matrix, is noticeably finer compared to the material crystallized from the H-free amorphous alloy, most probably due to the higher temperature of Zr2Ni formation in the H-charged amorphous alloy than in the H-free sample.  相似文献   

12.
由Miedema半经验公式计算出了Fe Dy二元系自由能图以揭示Fe Dy非晶多层膜的晶化本质。晶化受热力学和动力学两种因素控制 ,Fe,Dy晶态自由能低于初始非晶态 ,提供了晶化的热力学驱动力 ,而形核势垒及临界晶核尺寸控制了晶化反应的相选择 ,因而中等温度退火时先出现Fe晶粒 ,继而Dy晶粒 ,不出现金属间化合物。  相似文献   

13.
Annealing of poly(ethylene terephthalate) samples crystallized under isothermal conditions above the crystallization temperature has a marked influence on their morphology and results in increased thermal stability of the crystalline structure as indicated by the melting point increase of the samples. The morphological transformation processes induced by annealing are very complex and depend on the thermal history of the samples, i.e., crystallization temperature and heating procedure. Depending on the nature of the processes occurring during annealing, various parameters characterizing the semicrystalline state of the samples can be affected such as the degree of crystallinity, the long spacing, the thickness of amorphous and crystalline layers, the crystal perfection, the fold-surface structure, and the mosaic structure of the crystalline lamellae. Annealing involves a solid-state transformation of the original crystalline structure including crystal perfection without thickening or a melting followed by recrystallization with crystal perfection and crystal thickening. The combination of differential scanning calorimetric (DSC) measurements and small-angle x-ray scattering is a powerful analytical tool to detect morphological changes and helps in deciding on the processes which are involved in the transformation of the microstructure upon annealing.  相似文献   

14.
The methods of X-ray diffraction, Mossbauer spectroscopy, and magnetic measurements are employed to study the structural and phase transformations in the course of isochronous (1 h) annealing at 300–900°C and isothermal (350°C) annealing of a mechanically alloyed Fe/amorphous phase Fe-B/Bs nanocomposite with a total boron content of 32 at %. Common and specific regularities are established for the sequence of solid-phase reactions as compared to amorphous Fe-B alloys prepared by melt quenching. The observed differences are explained by a high thermal stability of the nanostructure in the mechanically alloyed Fe-B system due to the presence of boron atoms Bs segregated at the intergrain boundaries.  相似文献   

15.
The crystallization of a hydrogen-charged melt-spun Mg76Ni19Y5 amorphous alloy was studied in order to understand the influence of hydrogen absorbed on the crystallization kinetics and mechanism. Hydrogenation does not affect the thermal stability, but decreases significantly the enthalpy of crystallization. The glass transition, which is well manifested in the hydrogen-free alloy, is not observed after hydrogen charging. The main crystalline phases in the H-free and H-charged alloys are the same after complete transformation, but with finer microstructure for the hydrogenated samples.Analysis of the crystallization kinetics reveals that during annealing of hydrogen charged Mg76Ni19Y5 growth of nanocrystals surrounded by amorphous phase takes place just in the beginning of the transformation, followed by grain growth in fully crystallized material, which is the main process.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

16.
Ti-based amorphous alloys produced by ultra-rapid melt cooling represent an excellent option as biomaterials because of their mechanical properties and corrosion resistance. However, complete elimination of toxic elements is affecting the glass-forming ability and amorphous structure could be obtained only for thin ribbons or powders that are subsequently processed by powder metallurgy. Amorphous ribbons of special Ti42Zr40Ta3Si15 alloy, which is completely free of any toxic element, were produced by melt spinning, and the thermostability of resulting material was investigated in order to estimate its ability for further heat processing. Isochronal differential scanning calorimetry (DSC) was used to determine transformation points such as glass transition temperature T g or crystallization temperature T x. The activation energy for crystallization of amorphous phase was calculated based on Kissinger method, using heating rates ranging between 5 and 20 °C min?1. Amorphous structure of resulting ribbon was evidenced by means of X-rays diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). It was determined that amorphous Ti42Zr40Ta3Si15 alloy has a high activation energy for crystallization, similar to other Ti-based amorphous alloys, which provides good thermal stability for subsequent processing, especially by means of powder metallurgy techniques.  相似文献   

17.
We analyzed the thermal crystallization, glass‐transition behavior, and mechanical properties of melt‐extruded poly(trimethylene terephthalate) (PTT) films to investigate their physical aging and annealing effects. The physical aging and annealing of PTT films had an influence on the glass‐transition temperature, recrystallization behavior, and mechanical properties. When samples were aged at an ambient temperature, the crystallization temperature decreased largely within 5 h, the heat of crystallization increased, and the breaking stress and breaking elongation increased. The glass‐transition temperature of annealed samples, which was obtained from differential scanning calorimetry and dynamic mechanical measurements, increased with increasing annealing temperature below 80 °C but decreased above that temperature. In addition, the glass‐transition temperature and modulus of annealed samples were largely affected by the annealing time; in particular, they increased sharply within 1 h on annealing at 50 °C. Consequently, the change in the glass‐transition temperature on annealing was ascribed to the fact that the molecular constraint due to recrystallization and the mobility of rigid amorphous PTT chains competed with each other, being dependent on the annealing temperature. The mechanical properties of aged samples were closely related to their cold‐crystallization behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1920–1927, 2001  相似文献   

18.
Effects of co-solutes on the physical property of mannitol and sorbitol in frozen solutions and freeze-dried solids were studied as a model of controlling component crystallinity in pharmaceutical formulations. A frozen mannitol solution (500 mM) showed a eutectic crystallization exotherm at -22.8 degrees C, whereas sorbitol remained amorphous in the freeze-concentrated fraction in the thermal scan. Various inorganic salts reduced the eutectic mannitol crystallization peak. Trisodium and tripotassium phosphates or citrates prevented the mannitol crystallization at much lower concentrations than other salts. They also raised transition temperatures of the frozen mannitol and sorbitol solutions (T(g)': glass transition temperature of maximally freeze-concentrated amorphous phase). Crystallization of some salts (e.g., NaCl) induced crystallization of mannitol at above certain salt concentration ratios. Thermal and near-infrared analyses of cooled-melt amorphous sorbitol solids indicated increased intermolecular hydrogen-bonding in the presence of trisodium phosphate. The sodium phosphates and citrates should prevent crystallization of mannitol in frozen solutions and freeze-dried solids by the intense hydrogen-bonding and reduced molecular mobility in the amorphous phase.  相似文献   

19.
X-Ray diffraction, transmission electron microscopy, and magnetic measurements are used to study the crystallization of an amorphous compound: Li2B2O4 (90 mole%)-LiFe5O8 (10 mole%). The crystalline phase which first appears in the amorphous matrix is LiFe5O8. The average particle size (50 to 300 Å) may be controlled by varying the temperature of annealing and/or the time of annealing. The crystallization kinetics are similar to those of metallic glasses. The fraction transformed, x, as a function of time, satisfies the Johnson-Mehl-Avrami equation with an exponent n of 0.75. The activation energy for the crystallization process is approximately 0.6 eV. Both these values characterize a primary crystallization.  相似文献   

20.
Alloying behavior of gold into nm-sized amorphous antimony (a-Sb) clusters has been studied by transmission electron microscopy (TEM), employing gold clusters in contact with a-Sb clusters. In order to produce gold clusters on individual a-Sb clusters, a-Sb clusters on an amorphous carbon film were cooled down to 96 K, and gold was then condenced on the film. When gold clusters in contact with a-Sb clusters are gradually heated from 96 to 290 K, dissolution of gold into a-Sb clusters sets in around 200K and clusters of a-(Sb-Au) alloys are produced. With increasing annealing temperture, more gold is absorbed into individual a-Sb clusters, and when the gold concentration in a-(Sb-Au) clusters reaches to the stoichiometric composition of AuSb2, these amorphous clusters crystallize into AuSb2 clusters. The crystallization temperature decreases with decreasing size of initial a-Sb clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号