首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Solid solutions Bi3Nb1–yWyO7 ± δ, Bi3Nb1–yVyO7 ± δ, Bi3Nb1–yFeyO7 ± δ (y = 0.1–0.5; Δy = 0.1), and Bi3–xYxNb1–yWyO7 ± δ (x = 0.05, 0.1; y = 0–0.3; Δy = 0.1) have been studied. The homogeneity ranges of the solid solutions and crystal-chemical parameters have been determined by means of X-ray powder diffraction. The electrical conductivity of sintered samples has been studied by impedance spectroscopy. The joint introduction of yttrium and tungsten into the niobium sublattice does not lead to an increase in the conductivity of solid solutions, and the change of the dopant type has no noticeable effect on this conductivity.  相似文献   

2.
The work is devoted to the synthesis and attestation of a number of substituted vanadates and chromates of bismuth. For bismuth vanadates of the BIMEVOX family, the homogeneity regions of the Bi4V2 – xCr x O11 ± d solid solutions have been refined, the features of the structure change of the compounds with increasing chromium content and changing temperature have been noted, and the powders and ceramics have been studied by electron microscopy. For the first time, as an impurity, an individually substituted bismuth chromate of the composition Substituted bismuth chromate of the Bi13Cr5 – yV y O34.5 – d (y = 0.95 ± 0.05) composition has been detected for the first time as an impurity and synthesized as an individual compound, which has been characterized by X-ray diffraction, electron microscopy, chemical analysis, and photoelectron spectroscopy data; its homogeneity range has been determined, and electroconductive characteristics have been studied.  相似文献   

3.
A series of Ir1–xNixO2–y (0 ≤ x ≤ 0.5) composite oxides have been prepared by a simple pyrolysis method in ethanol system and used as the electrocatalysts for OER in acidic medium. The materials have been characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The electrochemical performances of these Ir1–xNixO2–y composite catalysts are evaluated by cyclic voltammetry (CV) and steady-state measurements. The resulting oxides with the Ni content (x) less than 0.3 have a complex nature of metal Ir and rutile structure IrO2 which is similar to the Ir oxide prepared by the same approach and possess the contracted lattice resulted from the Ni-doping. Although the addition of Ni reduces the electroactive surface areas due to the coalescence of particles, the catalytic activity of the Ir1–xNixO2–y (0 < x ≤ 0.3) catalysts is slightly higher than that of the pyrolyzed Ir oxide. Regardless of the surface area difference, the intrinsic activity first increases and then decreases with the Ni content in Ir1–xNixO2–y catalysts, and the intrinsic activity of Ir0.7Ni0.3O2–y catalyst is about 1.4 times of the Ni-free Ir oxide mainly attributed to the enhancement of conductivity and a change of the binding energy as increasing amount of the incorporated Ni with respect to the pure IrO2. The Ir0.7Ni0.3O2–y catalyst shows a prospect of iridium-nickel oxide materials in reducing the demand of the expensive Ir oxide catalyst for OER in acidic water electrolysis.  相似文献   

4.
The effect of active fillers such as titanium nitrides TiN x , carbides TiC x , and carbonitrides TiC x N y (0.5 < x or x + y ≤ 1.0) on properties of polymeric composites based on thermostable binders PAIS-104, SFP-012 AK-30, and ED-20 is studied.  相似文献   

5.
New complex oxides of composition Pr1–y Ca y Fe0.5 + x (Mg0.25Mo0.25)0.5–x O3, 0.0 ≤ x ≤ 0.1, 0.42 ≤ y ≤ 0.8 having an orthorhombically distorted perovskite structure have been prepared. The thermal expansion and electric conductivity of the new phases have been studied in the temperature range between 100–900°C. The results of our study imply that thin films of the oxides studied can be treated as electrode materials for symmetric solid-oxide fuel cells.  相似文献   

6.
A continuous solid solution LaMn1?y Cr y O3 with an orthorhombic structure is found to exist in the range of 0.0 ≤ y ≤ 1.0. An orthorhombic solid solution La1?x Sr x CrO3 exists in the range of 0.0 ≤ x ≤ 0.1. The stability boundaries are determined for the perovskite phase La1?x Sr x Mn1?y Cr y O3. An isobaric-isothermal section LaMnO3-SrMnO3-SrCrO4-LaCrO3 of the system La2O3-SrO-Mn3O4-Cr2O3 in air at 1100°C is designed.  相似文献   

7.
Phase equilibria involving LiMn2O4-, Li2MnO3-, LiMnO2-, Mn3O4-, and MnO-base solid solutions were studied with varied temperature and partial oxygen pressure. The \({P_{{o_2}}}\)T and xy projections of the PTxy phase diagram of the Li–Mn?O system were constructed, as well as the key xy isotherms of the Li2O–MnO–MnO2 quasi-ternary system. In some experiments, the authors’ hydride lithiation method was employed to prepare lithium-rich homogeneous three-component nonstoichiometric phases.  相似文献   

8.
Trajectory calculations are used to investigate peak shapes and ion transmission with a proposed new method of mass analysis with a quadrupole mass filter. Dipole excitation is applied to either the x or the y electrodes, or both, to create bands of instability within the first stability region. With excitation between the y electrodes (near β y ?=?0), ions are removed from the low mass side of a peak, and with ion excitation in x (near β x ?=?1), ions are removed from the high mass side. The mass resolution can be approximately doubled with comparatively little loss in ion transmission. Ion motion in an ideal quadrupole field and in the field of a quadrupole constructed with round rods has been studied. With an ideal quadrupole field, excitation in y is found to give better peak shape and resolution than excitation in x. With quadrupoles constructed with round rods, excitation in y is found to remove ions from both the low and high mass sides of a peak. The additional higher order multipoles introduced to the quadrupole potential by the use of round rods couple the x motion to the y motion so that exciting the y motion also excites ions in x. Thus, only excitation in y is necessary. Both with an ideal quadrupole field and quadrupoles constructed with round rods, the resolution can be increased ca. ×2 with little loss of transmission.
Graphical Abstract ?
  相似文献   

9.
Principal characteristics are determined of the process of pyrolysis of the propane-butane hydrocarbon raw material in a steel reactor in the presence of catalysts (ceramic film type polyphosphate covering on the steel reactor walls) containing metals of II and III groups of Periodical Table with the overall composition Me x O y ·z(P2O5), where x = 1, 2; y = 1, 3; z = 2, 3. By the investigation a sequence of catalytic activity of the samples of the metal-containing coverings by their effect on the yield of ethylene and propylene is elucidated: Zn > Cd > Sr > Ce. The similar sequence corresponds to inhibiting activity at the cocking inhibition.  相似文献   

10.
Synthetic procedures have been developed and compounds of composition K x Rb y Cs z TaWO6 (x + y + z = 1) have been obtained. Their structure has been investigated by X-ray diffractometry. It has been shown that a continuous series of solid solutions is formed in the ternary system under study. Thermal decomposition of AITaWO6 compounds (AI = K, Rb, Cs) has been investigated by high-temperature X-ray diffractometry.  相似文献   

11.
The dependence of the first coordination number k n on the packing factor k y is obtained for four cubic structures: fcc, bcc, simple cubic, and diamond. The k n (k y ) dependence is described by a third-degree polynomial k n = ?71.76782 + 467.78914 k y ? 925.48451 k y 2 + 603.01146 k y 3 with the confidence factor R d = 1. The k n (k y ) function has an N loop with a maximum at k n = 6.32; k y = 0.454 and a minimum at k n = 5.84; k y = 0.573. The tangents intersect the k n (k y ) curve at extrema at k y = 0.4 and k y = 0.625. Around the N loop, i.e., at 5.84 ≤ k n ≤ 6.32 and 0.4 ≤ k y ≤ 0.625, two or three packing factors correspond to a certain value of the coordination number. Therefore, this range of the k n and k y values can be defined as a “random packing” region. Estimations presented here agree well with the results of calculations, both geometric and numerical. For monoatomic solids with the random packing parameters, the difference between the specific volumes of the solid and liquid phases is insignificant. The dilatancy effect is possible in the region where ?k n / ?k y ≤ 0.  相似文献   

12.
Phase formation in the A1 + x Al x Ti2 ? x P3O12 (A = Li, Na, K, Rb, or Cs; 0 ≤ x ≤ 2.0) and B0.5(l + x)Al x Ti2 ? x P3O12 (B = Mg, Ca, Sr, or Ba; 0 ≤ x ≤ 2.0) systems was studied using X-ray powder diffraction, electron probe microanalysis, and IR spectroscopy. The following double and triple orthophosphates were found to exist: A1 + x Al x Ti2 ? x (PO4)3 with A = Li (0 ≤ x ≤ 0.3), Na (0 ≤ x ≤ 1.0), K (x = 0, 1.0, or 2.0), Rb (x = 0, 1.0, or 2.0), or Cs (0 ≤ x ≤ 1.0) and B0.5(l + x)Al x Ti2 ? x (PO4)3 with B = Mg and Ba (x = 0), Ca and Sr (0 ≤ x ≤ 0.2). These orthophosphates crystallize in the structure types of kosnarite, langbeinite, cesium titanium arsenate, potassium aluminum phosphate, or rubidium aluminum phosphate. Their crystal parameters were calculated. For CsTi2(PO4)3 (x = 0), Rietveld refinement was carried out: space group Ia \(\bar 3\) d, Z = 32, a = 19.909(5) Å, V = 7892(1) Å3. This compound has a framework structure. The framework is built of TiO6 octahedra and PO4 tetrahedra; eight- and 12-coordinated Cs+ cations populate interstices.  相似文献   

13.
Temperature dependences of the electrical conductivity are studied in the range 4.2’300 K and Seebeck coefficient at room temperature of bulk samples of tungsten dichalcogenide polycrystals with niobium substitutions for tungsten and selenium substitutions for sulfur – W1–x Nb x (S1–y Se y )2. The two-dimensionalization of electron transport properties is detected at niobium concentrations x ≥ 0.1 in W1–x Nb x S2 and x ≥ 0.05 in W1–x Nb x Se2. In samples with additional partial selenium substitution for sulfur the electron transport remains three-dimensional. At room temperature the Seebeck coefficient (at equal electrical conductivities) is several times higher in the samples with quasi-two-dimensional transport than in the samples with three-dimensional transport. The calculation of the power factor at room temperature shows its nine times increase.  相似文献   

14.
Investigations of solid state preparation of La1?xMnO3 compounds (x = 0, 0.1, 0.14, 0.17, 0.23) has revealed a number of intermediate structural states connected with progressive ordering of crystal structures. Freshly prepared non-stoichiometric compounds (x ≠ 0) are characterized by Mn4+ inclusion (0.09 ≤ y(Mn4+) 0.24) and rhombohedral space group \(R\bar 3c\).  相似文献   

15.
The subsolidus region of the Ag2MoO4-MgMoO4-Al2(MoO4)3 ternary salt system has been studied by X-ray phase analysis. The formation of new compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 (0 ≤ x ≤ 0.4) and AgMg3Al(MoO4)5 has been determined. The Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 variable-composition phase is related to the NASICON type structure (space group R \(\bar 3\) c). AgMg3Al(MoO4)5 is isostructural to sodium magnesium indium molybdate of the same formula unit and crystallizes in triclinic system (space group P \(\bar 1\), Z = 2) with the following unit cell parameters: a = 9.295(7) Å, b = 17.619(2) Å, c = 6.8570(7) Å, α = 87.420(9)°, β = 101.109(9)°, γ = 91.847(9)°. The compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 and AgMg3Al(MoO4)5 are thermally stable up to 790 and 820°C, respectively.  相似文献   

16.
Data on the thermogravimetry, spectroscopy, and electrical charge transfer as functions of T, aH2O, and aO2 for niobates and tantalates of alkali-earth metals with structure disordering of the oxygen sublattice, which can show high-temperature proton conduction, are summarized. It is shown that in the solid solution series with decreasing x (that is, with the increasing of the oxygen vacancies concentration) the proton conductivity increase, which is caused by the increasing of both the concentration of proton defects formed in the structure (in compliance with the formula Sr6 ? 2x M 2 + 2x +5 O10(OH)2?6x and their mobility. The proton transfer dominates for the compositions with x < 0.15 at temperatures below 550°C. In the solid solutions (Ba1?y Ca y )6Nb2O11 (0.23 ≤ y ≤ 0.47) characterized by equal concentration of oxygen vacancies, with the increasing of barium content (correspondingly, with the increasing of the lattice parameter) the oxygen-ion conductivity (at aH2O = 3 × 10?5) grows monotonically, which is caused by the decreasing of the oxygen atom migration energy and increasing of their mobility. In this series, the proton conductivity (at aH2O = 2 × 10?2) increased. It was shown, by using IR-spectroscopy and the 1H NMR method, that the protons exist in the complex oxide structure mainly as energy-wise nonequivalent OH? groups: isolated, closely set, and paired, whose quantitative ratios are determined by the coordination preference of the B-sublattice elements.  相似文献   

17.
Existence boundaries, structure, and transport parameters of ultrafine powders were studied in Bi4V2 ? x Fe x O11 ? x (BIFEVOX) solid solutions. The details of synthesis of the solid solutions via liquid precursors are analyzed comparatively. In general, BIFEVOX formation via liquid precursors is similar to phase formation in solid-phase synthesis. With low iron levels (x = 0.05–0.1), solid solutions are formed in the monoclinic α phase (space group C2/m) The compositions with x = 0.125 and 0.15 are mixtures of α- and β phases. In the range 0.2 < x < 0.7, the Bi4V2 ? x Fe x O11 ? x solid solution has the structure of the γ phase of Bi4V2O11 (space group I4/mmm). The β phase in the system in question has a very narrow existence range in the vicinity of x = 0.175. The average particle sizes of the powders prepared by various methods are within 0.5–3 μm. In the powders prepared via liquid precursors, however, the distribution peak shifts toward smaller sizes, to 0.3–1 μm. Mechanical activation conserves the structure of the γ phase of BIFEVOX, and unit cell parameters change only insignificantly; however, the crystal lattice is slightly distorted. The electrical conductivity of BIFEVOX was studied as a function of temperature, preparation technology, and composition using impedance spectroscopy. Equivalent circuits of cells were analyzed. The conductivity of samples prepared by solution technology is always higher than for samples prepared by the solid-phase process. Features of electrical conductivity versus temperature for various phases are noted. All transitions on the conductivity curves match the features of linear thermal expansion curves. Compositions with doping levels x= 0.1–0.3 have the highest total conductivities.  相似文献   

18.
The phase composition has been studied and an equilibrium phase diagram has been designed for the Al2O3-Li2O-R2O5 (R = Ta or Nb) systems in the subsolidus region up to 1000°C and 85 mol % Li2O. New phases with the composition Li1+x Al1?x O2?x , where x = 0–0.67, have been found.  相似文献   

19.
The process parameters (temperature, atmosphere, and composition) of the synthesis of complex carbonitrides W1?xZr x C1?yN y were determined. The area of formation of homogeneous carbonitrides in synthesis from refractory compounds and from WC and zirconium oxide was found. The conditions of appearance of the hemicarbide W2C were elucidated. The possibility of fabricating homogeneous carbonitrides (CNs) at the lower temperature of the synthesis by increasing fineness of the starting components by vibrogrinding was examined.  相似文献   

20.
The [Ir(NH3)5Cl]2[OsCl6]Cl2 binary complex salt has been prepared, and its structure was investigated by single crystal X-ray diffraction. Crystal data: a = 11.1901(13) Å, b = 7.9138(13) Å, c = 13.4384(18) Å; β = 99.640(3)°, V = 1190.0(2), space group C2/m, Z = 2, FW = 1099.47, d x = 3.068 g/cm3. Thermolysis products of [Ir(NH3)5Cl]2[OsCl6]Cl2, [Ir(NH3)5Cl][OsBr6], (NH4)2[OsCl6]x[IrCl6]1?x , and K2[OsCl6]x[IrCl6]1?x were studied by X-ray phase analysis; the unit cell parameters were refined, and the dependence of volume per atom (V/Z) on the composition of the Ir Os1?x solid solution has been plotted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号