首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phase diagram is constructed for the Sc2S3–Cu2S system. The system forms two incongruently melting complex sulfides: hexagonal CuScS2 (1Cu2S: 1Sc2S3): a = 0.3734 nm, c = 0.6102 nm, space group P3m1, Тm = 1635 K, ΔHm = 1670 kJ/mol; and cubic CuSc3S5 (1Cu2S: 3Sc2S3), a = 1.0481 nm, space group Fd3m, Тm = 1835 K. In the 45–62 mol % Cu2S solid solution (ss) range, there is a singular point corresponding to the composition of compound CuScS2 (50 mol % Cu2S). The Sc2S3-based solubility at 1070 K is 14 mol % Cu2S. In the γ-Cu2S-based solid solution range, there is a peritectic point at 7 mol % Sc2S3, 1423 K.  相似文献   

2.
Phase equilibria in the isothermal (970 K) and polythermal LaCuS2–EuS, Cu2S–EuLaCuS3, LaCuS2–EuLa2S4, and EuLaCuS3–EuLa2S4 sections of the Cu2S–La2S3–EuS system have been studied. EuLaCuS3 (annealing at 1170 K) is of orthorhombic system, space group Pnma, a = 8.1366(1) Å, b = 4.0586(1) Å, c = 15.9822(2) Å, is isostructural to Ba2MnS3, and incongruently melts by the reaction EuLaCuS3cryst (0.50 EuS; 0.50 LaCuS2) ? 0.22 EuS SS (0.89 EuS; 0.11 LaCuS2) + 0.78 liq (0.39 EuS; 0.61 LaCuS2); ΔН = 52 J/g. The Cu2S–La2S3–EuS system has been found to contain five major subordinate triangles. At 970 K, tie-lines lie between EuLaCuS3 and the Cu2S, EuS, LaCuS2, and EuLa2S4 phases and between the LaCuS2 phase and the γ-La2S3–EuLa2S4 solid solution. Eutectics are formed between LaCuS2 and EuLaCuS3 at 26.0 mol % of EuS and T = 1373 K and between EuLaCuS3 and EuLa2S4 at 29.0 mol % of EuLa2S4 and T = 1533 K.  相似文献   

3.
The phase diagram of system DyCuS2–EuS has been first constructed, and the phase equilibria in the Cu2S–Dy2S3–EuS triangle at 970 K have been studied. Compound EuDyCuS3 (1DyCuS2 : 1EuS), space group Pnma, a = 10.1901(3) Å, b = 3.9270(1) Å, c = 12.8468(3) Å, melts incongruently at 1727 ± 7 K according to the reaction: EuDyCuS3solid ? 0.17 SS EuS (90 mol % EuS, 10 mol % DyCuS2) + 0.83 liq (42 mol % EuS, 58 mol % DyCuS2), ΔH = 2.9 ± 0.6 kJ/mol; microhardness of the phase is 3080 ± 35 MPa. Compound EuDyCuS3 is transparent in the range 3000–1800 cm–1. In system DyCuS2–EuS, the solid solution (SS) based on EuS extends from 91 to 100 mol % at 1770 K and from 92 to 100 mol % at 1170 K. In γ-DyCuS2, 2 mol % EuS dissolves at 1487 K. The eutectic is formed between compounds DyCuS2 and EuDyCuS3 at 12 mol % EuS, T = 1487 ± 8 K. In system Cu2S?Dy2S3?EuS, 10 secondary systems have been isolated. At 970 K, tie-lines are located between compound EuDyCuS3 and solid solutions based on compounds β-Cu2S, EuS, DyCuS2, β-(DyCu3S3), and EuDy2S4; between DyCuS2 and the solid solution of α-Dy2S3, DyCuS2, and EuDy2S4.  相似文献   

4.
The binary system KVO3–K2CrO4 and two ternary systems, LiBr–LiVO3–Li2CrO4 and KBr–KVO3–K2CrO4, were studied. In the ternary systems, the compositions and melting points of eutectic alloys were determined by differential thermal analysis: (49.0 mol % LiBr, 5.0 mol % LiVO3, 46.0 mol % Li2CrO4, 400°C) and (17.0 mol % KBr, 78.0 mol % KVO3, 5.0 mol % K2CrO4, 458°C), respectively.  相似文献   

5.
Phase equilibria in the LiCl–LiBr–Li2SO4 ternary system and the LiCl–LiBr–Li2SO4–Li2MoO4 quaternary system were studied by differential thermal analysis. The compositions and temperatures of minima in the ternary and quaternary systems were determined to be (31.2 mol % LiCl, 46.8 mol % LiBr, 22.0 mol % Li2SO4, 460°C) and (25.2 mol % LiCl, 30.2 mol % LiBr, 14.6 mol % Li2SO4, 30.0 mol % Li2MoO4, 411°C), respectively.  相似文献   

6.
The magnetic phase diagram of solid solutions in the CoCr2S4–Cu0.5Ga0.5Cr2S4 system was constructed. The widest concentration range (0.38 < x < 1) in the diagram represents solid solutions based on the ferrimagnetic semiconductor CoCr2S4 (TC = 223 K), which exhibits unusual properties in the magnetic ordering region while measuring the temperature dependence of the dynamic susceptibility. The magnetic properties were studied with a Quantum Design PPMS-9 platform within the temperature range 5–300 K in a 100-Oe constant magnetic field and/or a varying (100-, 500-, and 1000-Hz) magnetic field with an amplitude of 1 Oe.  相似文献   

7.
Phase equilibria in the systems TlBiSe2–Tl9BiSe6–PbSe and Tl9BiSe6–Tl4PbSe3–PbSe were studied by differential thermal, X-ray powder diffraction, and microstructural analyses. State diagrams of the quasi-binary sections Tl9BiSe6–Tl4PbSe3, TlBiSe2–PbSe, and Tl9BiSe6–PbSe were constructed, and so were projections of liquidus surfaces and isothermal sections at 600 K for the secondary quasi-ternary systems TlBiSe2–Tl9BiSe6–PbSe and Tl4PbSe3–Tl9BiSe6–PbSe. The coordinates of invariant points and the boundaries of solid solutions were determined.  相似文献   

8.
The effect of TeO2 additions on the thermal behaviour of zinc borophosphate glasses were studied in the compositional series (100 − x)[0.5ZnO–0.1B2O3–0.4P2O5]–xTeO2 by differential scanning calorimetry, thermodilatometry and heating microscopy thermal analysis. The addition of TeO2 to the starting borophosphate glass resulted in a linear increase of glass transition temperature and dilatometric softening temperature, whereas the thermal expansion coefficient decreased. Most of glasses crystallize under heating within the temperature range of 440–640 °C. The crystallization temperature steeply decreases with increasing TeO2 content. The lowest tendency towards crystallization was observed for the glasses containing 50 and 60 mol% TeO2. X-ray diffraction analysis showed that major compounds formed by annealing of the glasses were Zn2P2O7, BPO4 and α-TeO2. Annealing of the powdered 50ZnO–10B2O3–40P2O5 glass leads at first to the formation of an unknown crystalline phase, which is gradually transformed to Zn2P2O7 and BPO4 during subsequent heating.  相似文献   

9.
The paper presents the studies of ionic and electronic Zeebeck coefficients and electronic conductivity in nonstoichiometric Ag0.25–δCu1.75Se, Ag1.2–δCu0.8Se solid solutions existing on the basis of the cubic phase of copper selenide. It is shown that Ag1.2–δCu0.8Se is a bilateral variable composition phase manifesting inversion of the sign of predominant charge carriers under variation of the chemical composition by silver within the homogeneity region. Mobilities of electrons and electron holes are estimated on the basis of the concentration dependences.  相似文献   

10.
Phase formation in the system Li2MoO4–MgMoO4–Sc2(MoO4)3 was studied by X-ray powder diffraction analysis and differential thermal analysis. Ternary molybdate LiMgSc(MoO4)3 was synthesized, which crystallizes in the triclinic system (space group P\(\bar 1\)). In the Li2Mg2(MoO4)3–Li3Sc(MoO4)3 section, a continuous solid solution in the rhombic system was found to form (space group Pnma).  相似文献   

11.
Evidence for the existence of primitive life forms such as lichens and fungi can be based upon the formation of oxalates. These oxalates form as a film like deposit on rocks and other host matrices. The anhydrous oxalate mineral moolooite CuC2O4 as the natural copper(II) oxalate mineral is a classic example. Another example of a natural oxalate is the mineral wheatleyite Na2Cu2+(C2O4)2·2H2O. High resolution thermogravimetry coupled to evolved gas mass spectrometry shows decomposition of wheatleyite at 255°C. Two higher temperature mass losses are observed at 324 and 349°C. Higher temperature mass losses are observed at 819, 833 and 857°C. These mass losses as confirmed by mass spectrometry are attributed to the decomposition of tennerite CuO. In comparison the thermal decomposition of moolooite takes place at 260°C. Evolved gas mass spectrometry for moolooite shows the gas lost at this temperature is carbon dioxide. No water evolution was observed, thus indicating the moolooite is the anhydrous copper(II) oxalate as compared to the synthetic compound which is the dihydrate.  相似文献   

12.
Organometallic-derived ceramic compositions surrounding YBa2Cu3O7–x (123) were evaluated via DTA-TG runs and dilatometric densification. The compositions were either Y, Ba or Cu deficient respect to 123. For the Yttrium deficient compact the presence of liquids containing 0–1.3 mole %YO1.5—capable of dissolving the 123 grains—can promote a rapid sintering behavior. For Copper deficient compact the main densification/contraction mechanisms were delayed till 985 °C. For both Barium and Copper deficient compacts a strong exudation of liquids was detected at 990 °C and 1020 °C, respectively.  相似文献   

13.
A quaternary super-ion-conducting system, 20CdI2 − 80[xAg2O − y(0.7V2O5 − 0.3B2O3)] where 1 ≤ x/y ≤ 3, has been prepared by melt quenching technique. The electrical conductivity measured was the order of 10−4  S/cm at room temperature. The values of silver-ion transport number obtained by electromotive force technique are nearly unity. The thermoelectric power and electrochemical studies were done on the CdI2–Ag2O–V2O5–B2O3 system. The discharge and polarization characteristics were examined for different cathodes to evaluate the utility of these cells as power sources for low energy applications.  相似文献   

14.
The boundaries of the glass formation region in the ternary system La2O3–As2S3–Er2O3 were found. Transparent glass of composition (La2O3)0.03(As2S3)0.90(Er2O3)0.07 was studied by X-ray photoelectron and Raman spectroscopy. The intensities of the bands characterizing As–S, La–O, and Er–O bonds increased, and these bands were shifted toward higher energies. This was due to an increase in the covalence of these bonds and probably due to the formation of new bonds in the glasses. Samples in the glass formation region are resistant at 300 K to air, water, and organic solvents.  相似文献   

15.
The solubility in the quaternary water–salt system Zr(SO4)2 · 4Н2О–Na2SO4–H2SO4–H2O at 25°C was studied. It was found that, in the system, there is crystallization of not only Na2SO4 and Zr(SO4)4 · 4H2O, but also sodium sulfate zirconates Na2Zr(SO4)2(OH)2 · 0.3H2O, Na4Zr(SO4)4 · 3H2O, and Na2Zr(SO4)2 · 3H2O and two new compounds, S1 and S2, which are presumably Na2ZrO(SO4)2 · 2H2O and Na2Zr2O2(SO4)3 · 6H2O.  相似文献   

16.
Phase equilibria in the Cu–Cu2Se–As were investigated by differential thermal analysis and X-ray powder diffraction analysis. Informative plots describing this system were constructed, viz., the polythermal sections Cu0.667Se0.333–As, Cu0.667Se0.333–Cu0.735As0.265, and Cu0.8Se0.2–As, the isothermal section of the phase diagram at 300 K, and the projection of the liquidus surface. The obtained results differ from the published data in length of fields of primary crystallization of phases and in coordinates of a number of invariant equilibrium points.  相似文献   

17.
The glass formation in the Al2(SO4)3–(CH3)2SO–H2O system was found for the first time. The competitive ability of ligands, dimethyl sulfoxide and water (which are strong donors), for entering the first coordination sphere of aluminum is considered. The possibility of mixed coordination of (CH3)2SO (via sulfur and oxygen atoms) in the first coordination sphere of aluminum with retention of the glass-forming ability of the sample was suggested on the basis of IR spectral study.  相似文献   

18.
By differential thermal, X-ray powder diffraction, and microstructural analyses and microhardness and density measurements, phase equilibria in the sections GeSnSb4Te8–GeTe and GeSnSb4Te8–SnTe were studied and their state diagrams were constructed. It was determined that these sections are quasi-binary sections of the eutectic type of the GeTe–Sb2Te3–SnTe system. The coordinates of the eutectic points in the sections GeSnSb4Te8–GeTe and GeSnSb4Te8–SnTe are (40 mol % GeTe, 700 K) and (30 mol % SnTe, 750 K), respectively. Regions of solid solutions based on the initial components in the sections were identified. Alloys in the regions of solid solutions are p-type semiconductors.  相似文献   

19.
The system LaPO4–SiO2–NaF–Nb2O5–Fe2O3 is characterized by immiscibility fields in the liquid state region. Addition of iron expands fields of immiscibility of melts and decreases the temperature of their coexistence. A fraction of 87–90% of niobium is extracted into iron silicate melt, and 92–98% of lanthanum is extracted into phosphate salt melt.  相似文献   

20.
The ternary system Tl–Gd–Te within the composition range Tl2Te–Tl5Te3–Tl9GdTe6 was studied by a set of physicochemical analysis methods. Some internal polythermal sections and the isothermal section at 300 K of the phase diagram were built, projections of the liquidus and solidus surfaces were constructed, and the graphs of the concentration dependences of the parameters and microhardness were plotted. It was shown that much (more than 90%) of the area of the concentration triangle is occupied by the homogeneity region of solid solutions with the Tl5Te3 structure (δ-phase). Solid solutions based on Tl2Te (α-phase) form within a narrow region. The regions of the α- and δ-phases are separated by two-phase region α + δ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号