首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The structural features of 39 mononuclear octahedral d 2-rhenium(V) monooxo complexes (I–ХХХIХ) with oxygen atoms of bidentate-chelating (O,O) acido ligands (Lig) are considered. In 21 complexes (I–ХХI), the O(lig) atoms are both in trans and cis positions to oxo ligands. In the other 18 complexes (XXI–XXXIX), both O(lig) atoms are in cis positions to the O(oxo) ligands.  相似文献   

2.
The crystal structures of two polymorphs of molybdenyl salicylidene-2-furfuryliminate [MoO2(L1)2] have been solved by X-ray diffraction. Both complexes crystallize in centrosymmetric and non-centrosymmetric space groups (P21/c and Р21, respectively) of monoclinic system and have similar structures and close geometric parameters. The Мо atoms have a distorted octahedral coordination to two terminal oxo ligands in cis-positions to each other and two pairs of the oxygen atoms (cis- to О(oxo)) and the nitrogen atoms (trans- to О(oxo)) of two bidentate chelate ligands (L1).  相似文献   

3.
The reaction of cyclopentylamine with 2-hydroxy-1-naphthaldehyde and 5-nitrosalicylaldehyde, respectively, in methanol affords two new Schiff bases, 1-(cyclopentyliminomethyl)naphthalen-2-ol (HL1) and 4-nitro-2-(cyclopentyliminomethyl)phenol (HL2). Two new zinc(II) complexes, [Zn(L1)2] (I) and [Zn(L2)2] (II), derived from the Schiff bases, have been prepared and characterized by single-crystal X-ray diffraction, FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P21/c with a = 17.834(4), b = 14.738(3), c = 9.868(2) Å, β = 91.20(3)°, V = 2593.1(9) Å3, Z = 4. Complex II crystallizes in the triclinic space group P \(\bar 1\) with a = 10.206(1), b = 10.502(1), c = 12.554(1) Å, α = 66.771(2)°, β = 78.133(2)°, γ = 76.292(2)°, V = 1191.8(1) Å3, Z = 2. The Zn atom in each complex is coordinated by two N and two O atoms from two Schiff base ligands, forming a tetrahedral geometry. The Schiff bases and the complexes were assayed for antibacterial activities.  相似文献   

4.
The syntheses and crystal structures of the layered coordination polymers M(C8H8NO2)2 [M = Mn (1), Co (2), Ni (3) and Zn (4)] are described. These isostructural compounds contain centrosymmetric trans-MN2O4 octahedra as parts of infinite sheets; the ligand bonds to three adjacent metal ions in μ3-N,O,O′ mode from both its carboxylate O atoms and its amine N atom. In each case, weak intra-sheet N–H?O and C–H?O hydrogen bonds may help to consolidate the structure. Crystal data: 1, C16H16MnN2O4, M r = 355.25, monoclinic, P21/c (No. 14), a = 10.6534(2) Å, b = 4.3990(1) Å, c = 15.5733(5) Å, β = 95.1827(10)°, V = 726.85(3) Å3, Z = 2, R(F) = 0.026, wR(F 2) = 0.067. 2, C16H16CoN2O4, M r = 359.24, monoclinic, P21/c (No. 14), a = 10.6131(10) Å, b = 4.3374(4) Å, c = 15.3556(17) Å, β = 95.473(4)°, V = 703.65(12) Å3, Z = 2, R(F) = 0.041, wR(F 2) = 0.091. 3, C16H16N2NiO4, M r = 359.02, monoclinic, P21/c (No. 14), a = 10.6374(4) Å, b = 4.2964(2) Å, c = 15.2827(8) Å, β = 95.9744(14)°, V = 694.66(6) Å3, Z = 2, R(F) = 0.028, wR(F 2) = 0.070. 4, C16H16N2O4Zn, M r = 365.68, monoclinic, P21/c (No. 14), a = 10.6385(5) Å, b = 4.2967(3) Å, c = 15.2844(8) Å, β = 95.941(3)°, V = 694.89(7) Å3, Z = 2, R(F) = 0.038, wR(F 2) = 0.107.  相似文献   

5.
The cadmium O,O′-dethyl (I) and O,O′-di-sec-butyl phosphorodithioate (II) complexes have been synthesized and characterized in detail by 13C, 31P, and 113Cd CP/MAS NMR. X-ray crystallography shows that complex II has a binuclear molecular structure [Cd2{S2P(O-s-C4H9)2}4]. For 31P and 113Cd NMR signals, the chemical shift anisotropy δaniso and the asymmetry parameter η have been calculated. The 31P NMR signals are assigned to the terminal and bridging ligands in the complexes.  相似文献   

6.
195Pt, 1H, and 13C NMR spectroscopy was used to study the structure of binuclear platinum(III) acetamidate complexes with 1,10-phenanthroline and 2,2′-bipyridine ligands [Pt2(phen)2(acam)4](NO3)2 (1) and [Pt2(bipy)2(acam)4](NO3)2 (2) in aqueous solutions. The 195Pt NMR spectra of solutions of complexes 1 and 2 in D2O exhibit two signals with satellites due to the 195Pt–195Pt spin-spin coupling (1 J(Pt–Pt) ≈ 6345 Hz), whereas their 1H and 13C NMR spectra contain four sets of signals for the protons and the carbon atoms of the heterocyclic and acetamidate ligands. The signals were assigned using the COSY, NOESY, and HSQC/ HMBC experiments and comparing the coordination shifts of the signals for the protons of heterocycles. These data allowed us to draw a conclusion that binuclear complexes 1 and 2 in solution have a head-to-head structure with nonequivalent platinum(III) atoms (coordination cores PtN5 and PtN3O2), the axial-equatorial coordination of the bidentate heterocyclic molecules, and two bridging and two terminal acetamidate ligands.  相似文献   

7.
A series of twist linear tetranuclear 3d–4f Co 2 III Ln 2 III [Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5)] complexes have been prepared under solvothermal conditions and structurally characterized with Schiff-base ligand 2-(((2-hydroxy-3-methoxyphenyl)methylene)amino)-2-(hydroxymethyl)-1,3-propanediol (H4L). The two central Co ions are linked by two alkoxyl oxygen atoms, and one Ln ion lying above and the other below the Co–Co dimer, form a twist linear array. The magnetic susceptibility studies reveal antiferromagnetic or ferromagnetic behaviour, whilst dynamic magnetic studies indicate no slow magnetic relaxation for these complexes.  相似文献   

8.
The single crystals of [UO2SO4{(CH3)HNCONH(CH3)}2] (I) were synthesized and studied by X-ray diffraction. The crystals are monoclinic, a = 6.847(1) Å, b = 14.259(3) Å, c = 14.297(3) Å, β = 93.451(4)°, space group P21/n, Z = 4. The main structural units of crystals I are ribbons whose composition coincides with the composition of the compound. The crystal chemical formula of the complex is AT3M 2 1 (A = UO 2 2+ ).  相似文献   

9.
The coordination polymers [AgPF6(Me4Pyz)2] (I) and [AgPF6(2,3-Et2Pyz)2] (II) were synthesized, and their structures were determined. Crystals of I are monoclinic, space group C2/c, a = 10.213(2) Å, b = 16.267(3) Å, c = 12.663(3) Å, β = 92.90(3)°, V = 2102.1(7) Å3, ρcalcd = 1.660 g/cm3, Z = 4. The structure of I is built of polymeric zigzag [Ag(C8H12N2)] + chains and octahedral [PF6] anions. The coordination polyhedron of the Ag+ ion is a flat triangle. Crystals of II are tetragonal, space group P \(\bar 4\)2(1)/c,a = b = 10.641(1) Å, c = 18.942(1) Å, V = 2144.6(2) Å3, ρcalcd = 1.627 g/cm3, Z = 4. In the structure of II, 2D cationic layers of fused square rings exist; the rings consist of four Ag+ cations linked by four bridging ligands of diethylpyrazine Et2Pyz. The coordination polyhedron of the Ag+ ion is an irregular four-vertex polyhedron.  相似文献   

10.
Two polymeric frameworks, [Zn(Dpb)(Oba)] n (Ι) and [Cd(Dpb)(2,6-Pda)H2O] n · nH2O (II) (Dpb = 1,4-bis(pyridin-3-ylmethoxy)benzene, H2Oba = 4,4'-oxybis(benzoic acid), 2,6-H2Pda = 2,6-pyridyl-dicarboxylate), have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction method (CIF files CCDC 1488269 (Ι), 1488270 (II)). Complex Ι is a 2D layer structure, which is constructed from 1D double chain. Complex II is a 1D chain. The luminescent properties of Ι, II have been investigated with fluorescent spectra in the solid state, I and II displayed a strong fluorescent emission at room temperature.  相似文献   

11.
Some structural features of 12 mononuclear octahedral d 2-Re(V) monooxo complexes (IХII) with the oxygen atoms of bidentate chelate (О,S) acido ligands (Lig) and a similar complex with the oxygen atom of a bidentate chelate (О,С) monoanionic ligand (XIII) have been considered. The O(Lig) atoms are in trans positions to О(oxo) ligands in eleven complexes IХ and XIII and in cis positions to oxo ligands in two complexes XI and XII. In all the cases, Re–O trans bonds are longer than Re–O cis (or Re–Ostand).  相似文献   

12.
Two new dioxomolybdenum(VI) complexes, [MoO2L1(MeOH)] (I) and [MoO2L2] (II), where L1 and L2 are the anionic forms of N'-(2-hydroxy-3,5-di-tert-butylbenzylidene)-4-methoxybenzohydrazide and 2-amino-N'-(2-hydroxy-3,5-di-tert-butylbenzylidene)benzohydrazide, respectively, have been synthesized and characterized by elemental analysis, FT-IR spectra, and single crystal X-ray determination (CF files CCDC nos. 1448089 (I), 1487063 (II)). The crystal of I is monoclinic: space group P21/n, a = 7.353(1), b = 24.758(3), c = 13.891(2) Å, β = 101.013(2)°, V = 2482.3(6) Å3, Z = 4, R 1 = 0.0848, wR 2 = 0.2050. The crystal of II is monoclinic: space group P21/c, a = 6.752(1), b = 16.947(1), c = 19.510(1) Å, β = 96.891(2)°, V = 2216.5(4) Å3, Z = 4, R 1 = 0.0670, wR 2 = 0.1638. The Mo atom in complex I is in octahedral coordination, with three donor atoms of the hydrazone ligand, two oxo groups, and one methanol O atom. The Mo atom in complex II is in square pyramidal coordination, with three donor atoms of the hydrazone ligand, and two oxo groups. The complexes have interesting catalytic properties for sulfoxidation reactions.  相似文献   

13.
The densities, viscosities and refractive indices of N,N /-ethylene-bis(salicylideneiminato)-diaquochromium(III) chloride, [Cr(salen)(H2O)2]Cl, in aqueous dimethylsulfoxide (DMSO) with different mass fractions (w 2 = 0.20, 0.40, 0.60, 0.80 and 1.00) of DMSO were determined at 298.15, 308.15 and 318.15 K under atmospheric pressure. From measured densities, viscosities and refractive indices the apparent molar volumes (V φ ), standard partial molar volume (V φ 0 ), the slope (S V * ), standard isobaric partial molar expansibility (φ E 0 ) and its temperature dependence (?φ E 0 /?T) p , the viscosity B-coefficient, its temperature dependence (?B/?T), solvation number (S n ) and apparent molar refractivity (R D φ ), etc., were calculated and discussed on the basis of ion–ion and ion–solvent interactions. These results revealed that the solutions are characterized by ion–solvent interactions rather than by ion–ion interactions and the complex behaves as a long range structure maker. Thermodynamics of viscous flow was discussed in terms of transition state theory.  相似文献   

14.
Two new complexes were synthesized, namely, 7: 2 (2.2.2-cryptand)potassium chloride and (2.2.2-cryptand)ammonium bromide(0.75)chloride(0.25) hydrates: [M(Crypt-222)]+ · Hal? · 3.5H2O, where M = K, Hal = Cl (I) and M = NH4, Hal = Br0.75Cl0.25 (II). The structures of two isomorphous crystals were studied by X-ray diffraction analysis. Trigonal (space group P \(\bar 3\), Z = 2) structures I (a = 11.763 Å, c = 11.262 Å) and II (a = 11.945 Å, c = 11.337 Å) were solved by direct methods and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.057 (I) and 0.065 (II) for all 2626 (I) and 1654 (II) independent measured reflections (CAD-4 automated diffractometer, λMoK α). In structures I and II, the host-guest [M(Crypt-222)]+ complex cation lies on the threefold crystallographic axis and has the approximate D 3 symmetry. In complex I, the coordination polyhedron of the K+ cation (CN = 8) is a bicapped trigonal prism somewhat distorted toward an antiprism. Complexes I and II contain H-bonded disordered cubes of the water molecules and the Cl? or Br? anions.  相似文献   

15.
Two ethylenediamine derivatives—N-(2-ammoniumethyl)carbamate HN(COO?)CH2CH2N+H3 (I) and tetraacetylethylenediamine (H3CC(O))2NCH2CH2N(C(O)CH3)2 (II) (synthesized for the first time)—have been synthesized and characterized by X-ray crystallography. Compounds I and II are isolated as minor admixtures upon an attempt to synthesize ethylenediamine complexes of lanthanum and neodymium nitrates, respectively. The crystals of I and II are monoclinic: a = 7.778 Å, b = 8.060 Å, c = 7.568 Å, β = 95.73°, Z = 4, space group P21/c (I); a = 5.946, b = 10.255, c = 9.343 Å, β = 95.72°, Z = 2, space group P21/c (II). The bond lengths and bond angles lie within the corresponding standard values. Compounds I and II have different conformations of the N-C-C-N ethylenediamine moiety: gauche in I and trans in II, and the corresponding torsion angles are equal to 66.6° and 180°, respectively.  相似文献   

16.
Coordination polymers [Ag(C4H10N2)]ReO4 (I) and [Ag(C4H10N2)]PF6 (II) (C4H10N2 is piperazine, Ppz) were synthesized and their structures were determined. Crystals of compound I are monoclinic, space group P21/c, a = 6.207(1) Å, b = 12.533(1) Å, c = 11.386(1) Å, β = 93.41(1)°, V = 884.2(2) Å3, ρcalc = 3.337 g/cm3, Z = 4. Crystals of II are monoclinic, space group C2/m, a = 8.723(1) Å, b = 9.083(1) Å, c = 5.797(1) Å, β = 95.07(1)°, V = 457.5(1) Å3, ρcalc = 2.548 g/cm3, Z = 2. Structure I contains polymer chains [Ag(Ppz)] + . The silver atom is linked with two nitrogen atoms of the adjacent Ppz ligands to form a nearly linear fragment; the Ag-Nav distance is 2.173 Å, and the NAgN angle is 169.4(3)°. The chains are linked with each other by weak interactions Ag…O(ReO4) (2.643(8) Å) and N-H…O hydrogen bonds. The structure of compound II also contains cationic polymer chains [Ag(Ppz)] + . The Ag+ ion is located in the inversion center and has a linear coordination (Ag-N distance is 2.171(9) Å). The central P atom of the octahedral fluorophos-phate ion is also located in the inversion center; the anion is slightly distorted and has no contacts with silver ions at a distance <3.4 Å.  相似文献   

17.
Six new homobimetallic bis-diorganotin(IV) complexes: [Me2Sn]2L (1), [Et2Sn]2L (2), [n-Bu2Sn]2L (3), [Ph2Sn]2L (4), [Oct2Sn]2L (5) and [n-BuClSn]2L (6) (H 4 L=N1′, N6′-bis(2-hydroxybenzylidene)adipodihydrazide) have been synthesized and structurally characterized by means of elemental analysis, mass spectroscopy, FT-IR, NMR (1H, 13C{1H}, 119Sn) and single-crystal X-ray diffraction. Spectroscopic studies indicate coordination of the ligand to the diorganotin(IV) moieties via iminolic oxygen, nitrogen and phenolic oxygen atoms generating pentacoordinated tin centers. Single-crystal X-ray analysis of (1) revealed homobimetallic nature of complex with dimethyltin moieties oriented in trans-conformation. The ligand is non-planar with each Sn atom in a distorted square pyramidal coordination geometry. Packing diagrams suggest the essential role of C–HN and C–HO interactions in generating supramolecular assembly. The ligand and complexes were screened for in vitro antimicrobial activity and cytotoxicity. Compound (4) exhibits highest cytotoxicity.  相似文献   

18.
Crystals of double polyphosphates EuCs5(PO3)8 (I) and GdCs5(PO3)8 (II) have been studied by X-ray diffraction. The isostructural crystals of I and II are monoclinic, space group C2. Only unit cell parameters have been determined for the crystals of double Pr and Cs polyphosphate (III). This crystal is isostructural with earlier studied La3Cs15P24O72 · 6H2O (IV). The crystals of compounds III and IV are triclinic, space group P1, Z = 1; a = 11.987(2) and 12.178(5) Å, b = 14.754(8) and 14.740(8) Å, c = 14.692(8) and 14.847(9) Å, α = 60.15(4)° and 60.87(5)°, β = 67.04(4)° and 66.35(4)°, γ = 78.76(3)° and 77.54(4)°, respectively. In compounds I and II, the polyphosphate anions exist as infinite chains. The MIIIO8 polyhedra are isolated from each other but share edges and faces with the CsO n polyhedra.  相似文献   

19.
The hydrothermal reaction of a mixture of V2O5, VCl3, 2,5-pyridinedicarboxylic acid and diluted H2SO4 for 68 h at 180°C gives a blue colored solution which yields prismatic blue crystals of IV 2 IV O2(SO4)2(H2O)6] (1) in 32% yield (based on V). Complex 1 was investigated by means of elemental analysis (C, H and S), TGA, FT-IR, manganometric titration, Single Crystal X-ray Diffraction Methods and also comparative antimicrobial activities. Crystal data for the compound: monoclinic space group P21/c and unit cell parameters are a = 7.3850(12) Å, b = 7.3990(7) Å, c = 12.229(2) Å, β = 108.976(12)° and Z = 2. Although structure of 1 as a natural mineral has been previously determined, this work covers new preparation method and full characterization of 1 along with comparison of antibacterial activity between 1 and the commercial vanadium(IV) oxide sulfate hydrate compounds, VOSO4 · xH2O (Riedel-de Haën and Alfa Aesar brand names). 1 was evaluated for the antimicrobial activity against gram-positive, gram-negative bacteria, yeasts and mould compared with the commercial VOSO4 · xH2O compounds. 1 showed weak activity against bacteria Bacillus cereus, Nocardia asteroides and yeast Candida albicans. A good antimicrobial activity was recorded against Cirtobacter freundii (15 mm). There are only a few reproducible well-defined vanadium(IV) starting materials to use for exploring the synthesis of new materials. VCl4, VO(acac)2, VOSO4 · xH2O and [V(IV)OSO4(H2O)4] · SO4 · [H2N(C2H4)2NH2] are common starting materials for such applications. In addition to these compounds, 1 can be used as an oxovanadium precursor.  相似文献   

20.
The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}(H2O)2](ClO4)2, [Pt(H 2 Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}(H2O)2](ClO4)2, [Pt(dCH 3 Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}(H2O)2](ClO4)2, [Pt(dCF 3 Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, \( k_{{{\text{obs }}\left( {1/2} \right)}} \), for the stepwise substitution of the first and second aqua ligands obeyed the rate law: \( k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] \). The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF 3 Py) > Pt(H 2 Py) > Pt(dCH 3 Py), while that of the second was Pt(H 2 Py) ≈ Pt(dCF 3 Py) > Pt(dCH 3 Py). Lower pK a values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号