首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable organosols of cadmium sulfide are obtained via the ion exchange reaction of cadmium nitrate with sodium sulfide in reversed micellar solutions of Brij-30 in n-decane and are characterized by means of spectrophotometry, luminescence, photon correlation spectroscopy (PCS), and transmission electron microscopy (TEM). It is established that adding anionic surfactant AOT to organosols produces double electric layers on the surfaces of nanoparticles and contributes to an additional 50-fold electrophoretic concentration. Electrophoretic concentrates of cadmium sulfide nanoparticles (0.5 M) are obtained in cells with vertical orientation of the electrodes and periodic changes in polarity. The average diameter of the nanoparticles according to TEM data is 5 nm, considerably less than the hydrodynamic diameter found by PCS (70 nm), testifying to the complex structure of a mixed adsorption layer surrounding a nanoparticle.  相似文献   

2.
Stable invert emulsions water/oil and double emulsions oil1/water/oil2 containing polyisobuthylene as pressure-sensitive polymeric adhesive are prepared. The dispersed phase of the invert emulsions contained micelles of the surfactant Tween 80 (Tw) with solubilized drug (Felodipine) and a skin permeation enhancer (glycerol monooleate, GMO). The active components (Felodipine and GMO) of the double emulsions were incorporated into the internal dispersed phase, while the intermediate water layer contained Tw and hydroxypropylcellulose. Ultradispersed polymer films with good adhesion to skin were prepared from both types of emulsions. The films based on double emulsions demonstrate the ability to release Felodipine at therapeutically effective levels and maintain these levels during the first 24 h to attain a therapeutically required dose. The invert and double emulsions were for the first time utilized as bases for microheterogeneous matrices for delivery of a lipophilic drug in bioavailable form.  相似文献   

3.
Monolithic aerogels composed of cadmium sulfide nanoparticles partially modified with metallic gold (CdS-Au) are reported. The semiconductor–metal nanoparticles are synthesized using an inverse micelle media of Bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) in heptane, followed by capping with 4-fluorothiophenol and precipitation with triethylamine. The nanoparticles are then dispersed in acetone and gel formation is achieved using nanoparticle condensation strategy. The resultant CdS-Au aerogel materials are mesoporous, with an interconnected network of semiconductor–metal nanoparticles. A detailed microstructure analysis of the semiconductor–metal aerogels via transmission electron microscopy indicates that the final gold concentration significantly impacts the semiconductor–metal aerogel morphology and porosity.  相似文献   

4.
The present study investigated the transient formation of water-in-oil (W/O) emulsions of sodium bis(2-ethylhexyl) sulfosuccinate (aerosol OT, AOT) in a dodecane/water interfacial region and the anomalous uptake of water in the dodecane phase by in situ bright-field optical microscopy and water concentration measurements in detail. The hydrodynamic radius of the individual W/O emulsions in the dodecane phase was determined to be 0.1-1.2 μm from the analysis of their diffusion behavior; they are much larger than common W/O microemulsions (a few nanometers in radius). At first, they were formed spontaneously in the dodecane/water interfacial region without shaking, and they diffused away into the dodecane phase. Then, almost all of them vanished at the interface by fusion. Their number and the water concentration in the dodecane phase increased first and then decreased gradually. The formation mechanism was discussed with estimated concentration profiles of AOT and water molecules, which suggests that larger W/O emulsions of 0.01-0.44 μm in radius can be formed in the dodecane phase near the interface (within 2 μm) because the concentration of AOT becomes lower than that of water there.  相似文献   

5.
This paper presents a facile method for the preparation of snowman-like Janus particles (SJP) with asymmetric fluorescent property via seeded emulsion polymerization, in which in situ formed raspberry-like cadmium sulfide/poly(styrene–divinylbenzene–acrylic acid) nanocomposite particles (RNP) were used as the seeds. The as-prepared RNP and SJP have been thoroughly characterized by transmission electron microscopy, field-emission scanning electron microscopy, thermogravimetric analysis, X-ray powder diffraction, Fourier transform infrared, ultraviolet visible, and photoluminescent spectrometry. It is found that the size ratio of the polymer bulge/inorganic seed part could be continuously tuned as well as the composition of polymer bulges by changing the composition of monomer mixtures and monomer/seed weight ratio. The obtained Janus particles possess amphiphilic properties which can be further used as solid surfactants to stabilize W/O emulsions and successively to construct hierarchical structured materials. Meanwhile, their asymmetric fluorescent properties may be exploited to detect their assembled situation and orientation at the oil–water interface of emulsions as well as at the surface of hierarchical structured materials.
Figure
Snowman-like Janus particles with asymmetric fluorescent property are successfully synthesized via seeded emulsion polymerization using in situ formed raspberry-like cadmium sulfide/poly(styrene–divinylbenzene–acrylic acid) nanocomposite particles as the seeds  相似文献   

6.
The effect the degree of hydration has on optical and electrophysical properties of water/AOT/n-hexane system is studied. It is found that AOT reverse micelles form aggregates whose dimensions grow along with the degree of hydration and temperature. Aggregation enhances their electrical conductivity and shifts the UV spectrum of AOT reverse emulsions to the red region. Four states of water are found in the structure of AOT reverse micelles.  相似文献   

7.
Thin cadmium sulfide films were prepared on a monocrystalline-crystal silicon substrate by chemical deposition from aqueous solutions. Grazing incidence X-ray diffraction revealed that the cadmium sulfide films are comprised of nanocrystal particles, with 80% of the particles having a size of 5 ± 1 nm. Some nanocrystals have a wurtzite structure, while others, a sphalerite one. The presence of cubic phase in the films is indicative of a nonequilibrium state of the nanocrystalline films. Thirty minutes after the onset of the formation of cadmium sulfide, the size and crystal structure of the constituent particles of the film become independent of the deposition time—only the film thickness increases. In addition, the initial stage of the formation of the cadmium sulfide film is accompanied by the deposition of cadmium hydroxide Cd(OH)2.  相似文献   

8.
Polypyrrole (PPy) nanotubes were readily fabricated through chemical oxidation polymerization in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse (water-in-oil) emulsions. The reverse cylindrical micelle phase was characterized, and the key factors affecting the formation of PPy nanotubes were systematically inspected. AOT reverse cylindrical micelles were prepared via a cooperative interaction between an aqueous FeCl3 solution and AOT in an apolar solvent. In the H2O/FeCl3/AOT/apolar solvent system, the aqueous FeCl3 solution played a role in increasing the ionic strength and decreasing the second critical micelle concentration of AOT. As a result, AOT reverse cylindrical micelles could be spontaneously formed in an apolar solvent. In addition, iron cations were adsorbed to the anionic AOT headgroups that were capable of extracting metal cations from the aqueous core. Under these conditions, the addition of pyrrole monomer resulted in the chemical oxidation polymerization of the corresponding monomer at the surface of AOT reverse cylindrical micelles, followed by the formation of tubular PPy nanostructures. In a typical composition (74.0 wt % hexane, 22.4 wt % AOT, and 3.6 wt % aqueous FeCl3 solution at 15 degrees C), the average diameter of PPy nanotubes was approximately 94 nm and their length was more than 2 mum. The PPy nanotube dimensions were affected by synthetic variables such as the weight ratio of aqueous FeCl3 solution/AOT, type of apolar solvent, and reaction temperature. Moreover, the relationship between the diameter and the conductivity of the nanotubes was investigated.  相似文献   

9.
In this paprr we are presenting the synthesss “in situ” of nanoparticles in reverse micelles. In the case of aggregates containing copper ions, it is possible to form metallic particles surrounded or not by an oxide layer. By mixing aggregates containing cadmium and sulphide ions, CdS particles are formed. The size and polydispersity of the particles are controlled. The photoelectron transfer reaction depends mainly on the surface composition. In the range of 1 to 5 nm, the efficiency in the electron transfer does not depend on the size of the particle. The reverse micelles are formed by using either sodium di(2-ethyl hexyl)sulfosuccinate, usually called {AOT} or mixed bivalent and sodium di(2-ethyl hexyl)sulfosuccinate {AOl/M(AOT)2}.  相似文献   

10.
The in situ surface activation of raw CaCO(3) nanoparticles by interaction with a series of sodium carboxylates of chain length between 6 and 12 as well as sodium 2-ethylhexylsulfosuccinate (AOT) was studied, and the impact of this on the stabilization and phase inversion of toluene-water emulsions was assessed. By using complementary experiments including measurement of particle zeta potentials, adsorption isotherms of amphiphile, and relevant contact angles, the mechanism of this activation was revealed. The results show that hydrophilic CaCO(3) nanoparticles can be surface activated by interaction with sodium carboxylates and AOT even if they are not surface-active themselves. Both the electrostatic interaction between the positive charges on particle surfaces and the negative charges of anionic amphiphile headgroups and the chain-chain interactions of the amphiphile result in monolayer adsorption of the amphiphile at the particle-water interface. This transforms the particles from hydrophilic to partially hydrophobic such that they become surface-active and stabilize oil-in-water O/W(1) emulsions and induce O/W(1) → water-in-oil W/O phase inversion, depending on the chain length of the carboxylate molecules. At high amphiphile concentration, bilayer or hemimicelle adsorption may occur at the particle-water surface, rendering particles hydrophilic again and causing their desorption from the oil-water interface. A second phase inversion, W/O → O/W(2), may occur depending on the surface activity of the amphiphile. CaCO(3) nanoparticles can therefore be made good stabilizers of both O/W and W/O emulsions once surface activated by mixing with traces of suitable anionic amphiphile.  相似文献   

11.
-Finely powdered cadmium sulfide in aqueous, air-saturated, phosphate buffered suspension sensitizes the photooxidation of cysteine to cystine with good efficiency; several additional thiols and inorganic sulfides are also photooxidized. The other amino acids (histidine, methionine, tryptophan, tyrosine) known to be rapidly photooxidized with typical organic photosensitizers are photooxidized only very slowly. The quantum yield of oxygen uptake during cysteine photooxidation is pH dependent with a maximum (0.021) at pH 9.5; the yield is not increased in D2O and is not decreased appreciably by sodium azide, suggesting that singlet oxygen is not involved in the photooxidation process. The slow rate of photooxidation of histidine, which is known to react efficiently with singlet oxygen, also suggests that little if any singlet oxygen is produced by illuminated cadmium sulfide. Superoxide dismutase inhibits the yield of cysteine photooxidation to a maximum of approximately 50%, suggesting the partial involvement of superoxide in the reaction mechanism. The quantum yields of the photooxidation of cysteine, ethylenediaminetetraacetate and inorganic sulfides decrease as the wavelength of the exciting light is increased. Yeast alcohol dehydrogenase, a sulfhydryl enzyme, is inactivated by photodynamic treatment with cadmium sulfide; lysozyme, which has no free sulfhydryl groups, is not.  相似文献   

12.
AgCl and AgBr nanoparticles formation conditions were studied by a thermochemical method in AOT (sodium bis(2-ethylhexyl)sulfosuccinate) inverted micellar systems, in AOT—dioctyl sulfide (DOS) mixed micelles, and (for comparison) in aqueous solutions. The heats of formation of AgCl and AgBr nanoparticles in AOT micelles in exchange reactions with potassium halides are, respectively, −55.5 × (1 ± 0.07) and −68.6 × (1 ± 0.07) kJ/mol, that is, smaller in magnitude than the values obtained for aqueous solutions (−68 × (1 ± 0.07) and −88 × (1 ± 0.07) kJ/mol). This difference arises from the existence of particle interactions causing the formation of coagulation contacts between halide particles followed by precipitation in an aqueous phase and the absence of such interactions in a micellar medium. DOS interacts with AOT (to form mixed micelles) and with silver ions (in long-term contact), thus reducing the heats of reactions.  相似文献   

13.
Cadmium sulfide nanoparticles (approximately 5 nm), chemically capped using thioglycerol molecules, have been anchored onto silica particles (approximately 80 nm) functionalized with 3-aminopropyltrimethoxysilane. Transmission electron microscopy clearly showed that at a low concentration of cadmium sulfide, nanoparticles were discretely and more or less uniformly attached onto the silica particles. At a high concentration of cadmium sulfide nanoparticles, an approximately 6-nm-thick compact shell of cadmium sulfide was formed on the silica particles. In both cases the nanocrystalline nature of cadmium sulfide particles was preserved, as is evident from X-ray diffraction and optical absorption spectra.  相似文献   

14.
We introduce a facile and versatile approach for the formation of ball-like polymer–inorganic patchy microcapsules with a tunable shell by combining sol–gel chemistry of silica precursor and phase separation between the polymer and the precursor. Firstly, chloroform-in-water emulsion droplets containing poly(methyl methacrylate) (PMMA), silica precursor [tetraethyl orthosilicate (TEOS)] and co-surfactant sodium dioctyl sulfosuccinate (Aerosol OT or AOT) were prepared by shaking the mixture by hand. Due to the added AOT, water molecules diffuse into the chloroform droplets, and the tiny water droplets would coalesce gradually, triggering the formation of double emulsion droplets. Upon further solvent evaporation, the concentration of the polymer and the silica precursor in the oil shell of the double emulsions increases, leading to the phase separation between the polymer and the precursors (and partially formed silica through the hydrolysis and condensation of TEOS). Because of the confined geometry of the oil shell in the double emulsions, polymeric disc-like structures, stabilized by AOT, were dispersed in the silica precursors. Meanwhile, the silica precursor hydrolyzed and condensed when brought in contact with the aqueous solution, ultimately leading to the formation of a mineralized shell around the polymer domains and the hybrid patchy microcapsules. Effect of synthesis conditions, such as the amount of TEOS, AOT, and PMMA used, the pH value, and solvent evaporation rate on interfacial behavior of the solvent/water; and the morphology of the patchy microcapsules were investigated. Patchy microcapsules with tunable patch size and shape can be generated through tailoring the experimental parameters. Our study indicates that the hybrid patchy microcapsules can be formed by taking advantage of the sol–gel chemistry and the phase separation process, and the underlying generality of the synthesis procedure allows for a variety of applications, including drug storage, coatings, delivery, catalysis, and smart building blocks in self-assembling systems.  相似文献   

15.
Two procedures for the determination of sulfides are compared. In one, the sulfide, contained in a weakly alkaline cadmium acetate solution, is added to a neutral solution containing potassium iodide and potassium iodate, which is then acidified. It is shown that, when this order is followed, errors are introduced, which are probably due to the partial oxidation of sulfide to sulfate instead of to elemental sulfur. In the other method the sulfide in the cadmium acetate solution is added first to an acid solution, followed by the addition of the potassium iodide-iodate solution. The theoretical yield was obtained.  相似文献   

16.
Synthesis of nano-dimensional particles of cadmium sulfide in the pores of perfluorosulfonic membrane by means of the ion-exchange fixation of Cd2+ cations and the subsequent treating with gaseous hydrogen sulfide is carried out. As a result of gradual “step-by-step” accumulation of the guest substance monotonous downfield shift of the absorption bands in the visible spectrum is observed. In the luminescence spectra a set of bands is registered characterizing the dimensional distribution of small X-ray amorphous particles. Contrary to that one-step capsulation of cadmium sulfide by means of sulfidation of membrane with the content of Cd2+ ions close to the saturated state provides the formation of nano-dimensional particles of cubic structure. Their absorption band is maximally close in its position to that of the bulk CdS, and in the luminescence spectrum characteristic long-wave radiation with λmax 670 nm dominates. Optical properties of cadmium sulfide and their dimensional specific features are described considering the population of (Cd-S)-antibonding orbitals resulting from photoexcitation.  相似文献   

17.
On the basis of X-ray diffraction and chemical analysis data, it was found that cadmium sulfide exhibiting the ‘size effect’ is formed during the UV irradiation of aqueous solutions of cadmium thiosulfate. Sulfate ions and hydrogen ions accumulate in the aqueous solution. It was shown that the yield of cadmium sulfide is affected by the concentration of thiosulfate ions in the solution. The overall equation of photolysis of cadmium thiosulfates is proposed.  相似文献   

18.
Free sulfide in rumen preserved with a sulfide antioxidation reducing buffer (SAOB) is determined directly and rapidly with a sulfide ion electrode using a standard addition technique. Acid-labile sulfide in blood preserved in alkaline cadmium acetate is determined by electrode measurement after acid liberation in a Johnson-Nishita apparatus and absorption in 50% SAOB. The sulfide antioxidant reducing buffer SAOB is not recommended for preservation of blood samples because of its desulfuration effect on S-proteins and S-amino acids present in blood.  相似文献   

19.
Cadmium sulfide (CdS) quantum dots (QDs) are formed within poly(ethylene oxide)-block-polystyrene-block-poly (acrylic acid) (PEO-b-PS-b-PAA) triblock copolymer aggregates of different architectures. These structures are obtained starting with the same ionically cross-linked primary micelles consisting of a cadmium acrylate core, a PS shell, and a PEO corona. One morphology is a worm-shaped micelle prepared in tetrahydrofuran (THF) in which the CdS QDs are surrounded by the PAA and aligned as a loose necklace in the PS matrix. The PEO serves as a corona around the PS rod. Another structure is a multicore spherical (ca. 50 nm) water soluble PS micelle, surrounded by PEO chains. The CdS particles within these two latter structures are formed by the reaction of cadmium ions present in the acrylate cores with hydrogen sulfide. In a third structure, the CdS QDs are located on the surface of PS micelles. A fourth spherical single-core micelle structure is postulated to exist in dilute THF solutions. The dimensions in all the aggregates can be controlled by the block length.  相似文献   

20.
It was found that the dependence of the light sensitivity of photographic emulsions whose solid phase was synthesized with the use of ammonia on the duration of sulfur or sulfur + gold sensitization could exhibit two maximums. The maximum observed at shorter hold times is due to light sensitivity centers that are silver in nature, which are formed by the thermal decomposition of Ag2O, and the other maximum is determined by silver sulfide or mixed silver gold sulfide centers. The effect of tetravalent iridium ions introduced during the production of AgBr grains on the chemical sensitization of photographic emulsions was revealed.Translated from Khimiya Vysokikh Energii, Vol. 39, No. 1, 2005, pp. 36–38.Original Russian Text Copyright © 2005 by Belous, Zhukov, Sviridova.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号