首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2–C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.  相似文献   

2.
The effect of the nature of a solvent on the liquid-phase epoxidation of olefins with an aqueous solution of hydrogen peroxide over a titanium-containing zeolite is studied. Butanol-1, butanol-2, propanol-1, isopropanol, methanol, ethanol, water, acetone, methyl ethyl ketone, isobutanol, and tert-butanol are examined as solvents. A mechanism of olefin epoxidation with hydrogen peroxide in an alcohol medium over a titanium-containing zeolite is proposed. Epoxidation reactions involving hydrogen peroxide and different olefins are studied experimentally.  相似文献   

3.
The kinetics of etherification of tert-butanol with aliphatic alcohols on gel KU-2×8 and macroporous KU-23 sulfo cation exchangers was studied. The first order of reaction with respect to tert-butanol and the -CSO3H groups of a catalyst was established. The activation energy of the process observed on KU-2×8 was 60–95 kJ/mol. It was shown that the etherification of tert-butanol on KU-2×8 occurred in a surface layer. The reactivity of primary alcohols introduced into the reaction with tert-butanol increased with their molecular weights (C2–C5). The rate of reaction with secondary alcohols was lower than that with primary alcohols.  相似文献   

4.
In this research, a new series of thiazoline-iridium (III) complexes ( 4 – 7 ) derived from cysteine were prepared and fully characterized by conventional methods. The molecular structure of complex 5 was also determined by single-crystal X-ray diffraction. These complexes were evaluated as catalysts for hydrogen-borrowing reactions of amines with alcohols. In particular, complex 5 showed the best activity as catalyst. Various amines have been alkylated with alcohols affording moderate to good yield (33–99%). Moreover, the immobilized nanomaterials ( M 1,2 ) were fabricated by sonication process from the best catalyst 5 with the multi-walled carbon nanotubes (MWCNTs) and graphene oxide (GO), respectively, and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, and inductively coupled plasma-mass spectrometry (ICP-MS). The M 1,2 nanomaterials were also tested as catalysts in model catalytic reaction for N-alkylation. The M 1 nanomaterial showed significantly higher activity than the M 2 nanomaterial. The M 1 catalyst was recovered by filtration and reused for four catalytic cycles with high conversion (99%, 97%, 96%, and 86%).  相似文献   

5.
Exploration of cost‐effective, high‐performance and durable multifunctional electrocatalysts is of significant importance for renewable energy conversion and storage. In this work, a simple strategy is developed to tailor the nickel metal with the collaboration of nitrogen‐doped graphene and single‐walled carbon nanotubes. The resulted nickel catalyst exhibits superior trifunctional activities for oxygen evolution, hydrogen evolution and oxygen reduction reactions in the same electrolyte, even comparable to commercial Pt/C and RuO2 respectively, which can be attributed to the synergistic advantages between nickel, nitrogen and carbon, mainly including abundant integrated active sites achieved by the irregular charge distribution among C?N and Ni?N coupling centers. Such remarkable effects on trifunctional catalysis elicit the efficient overall water splitting, and endow the assembled zinc‐air battery with a good performance. These highlight the metallic nickel as an advanced multifunctional electrocatalysts with integrated sites developed from the collaboration of two different carbon nanomaterials.  相似文献   

6.
Nonmetallic carbon‐based nanomaterials (CNMs) are important in various potential applications, especially after the emergence of graphene and carbon nanotubes, which demonstrate outstanding properties arising from their unique nanostructures. The pristine graphitic structure of CNMs consists of sp2 hybrid C?C bonds and is considered to be neutral in nature with low wettability and poor reactivity. To improve its compatibility with other materials and, hence, for greater applicability, CNMs are generally required to be functionalized effectively and/or doped with heteroatoms in their graphitic frameworks for feasible interfacial interactions. Among the various possible functional/doping elements, nitrogen (N) atoms have received much attention given their potential to fine tune the intrinsic properties, such as the work‐function, charge carrier concentration, surface energy, and polarization, of CNMs. N‐doping improves the surface energy and reactivity with enhanced charge polarization and minimal damage to carbon frameworks. The modified surface energy and chemical activity of N‐doped carbon nanomaterials (NCNMs) can be useful for a broad range of applications, including fuel cells, solar cells, Li‐ion batteries, supercapacitors, chemical catalysts, catalyst supports, and so forth.  相似文献   

7.
A general epoxidation of aromatic and aliphatic olefins has been developed under mild conditions using heterogeneous CoxOy–N/C (x=1,3; y=1,4) catalysts and tert‐butyl hydroperoxide as the terminal oxidant. Various stilbenes and aliphatic alkenes, including renewable olefins, and vitamin and cholesterol derivatives, were successfully transformed into the corresponding epoxides with high selectivity and often good yields. The cobalt oxide catalyst can be recycled up to five times without significant loss of activity or change in structure. Characterization of the catalyst by XRD, TEM, XPS, and EPR analysis revealed the formation of cobalt oxide nanoparticles with varying size (Co3O4 with some CoO) and very few large particles with a metallic Co core and an oxidic shell. During the pyrolysis process the nitrogen ligand forms graphene‐type layers, in which selected carbon atoms are substituted by nitrogen.  相似文献   

8.
Cu–Ni/γ-Al2O3 bimetallic catalysts were developed for anaerobic dehydrogenation of non-activated primary aliphatic alcohols to aldehydes. Systematic investigation about the promotion effect of nickel on the catalytic performance was carried out. Hydrogenation of C=C bond rather than C=O bond, was significantly improved over Cu–Ni/γ-Al2O3 catalyst by introducing nickel, which interprets the good conversion of primary aliphatic alcohols. This work would contribute to design new catalysts for dehydrogenation of primary aliphatic alcohols.  相似文献   

9.
《Electroanalysis》2018,30(8):1621-1626
We report the advantages of hybrid nanomaterials prepared with electrogenerated ferrites (MFe2O4; M: Co, Mn) and multi‐walled carbon nanotubes (MWCNTs) or thermally reduced graphene oxide (TRGO) on the electro‐reduction of hydrogen peroxide. Glassy carbon electrodes (GCE) modified with these hybrid nanomaterials dispersed in Nafion/isopropanol demonstrated a clear synergism on the catalytic reduction of reduction of hydrogen peroxide at pH 13.00. The intimate interaction between MFe2O4 and carbon nanomaterials allowed a better electronic transfer and a facilitated regeneration of M2+ at the carbon nanomaterials, reducing the charge transfer resistances for hydrogen peroxide reduction and increasing the sensitivities of the amperometric response.  相似文献   

10.
As some of the most interesting metal‐free catalysts, carbon nanotubes (CNTs) and other carbon‐based nanomaterials show great promise for some important chemical reactions, such as the selective oxidation of cyclohexane (C6H12). Due to the lack of fundamental understanding of carbon catalysis in liquid‐phase reactions, we have sought to unravel the role of CNTs in the catalytic oxidation of C6H12 through a combination of kinetic analysis, in situ spectroscopy, and density functional theory. The catalytic effect of CNTs originates from a weak interaction between radicals and their graphene skeletons, which confines the radicals around their surfaces. This, in turn, enhances the electron‐transfer catalysis of peroxides to yield the corresponding alcohol and ketone.  相似文献   

11.
Carbon nanomaterials with graphene structure (single- and multiwall nanotubes and nanofibers) after oxidizing by a mixture of sulfuric and nitric acids and presumable introducing of carboxyl groups can be used as carrying agents of hydrogenation catalysts. Platinum in a concentration which should not exceed 10 wt % can be fixed using H2PtCl6 as a precursor in presence of an organic base. Catalysts based on these nanomaterials with the average size of platinum particles 6–8 nm exceed in activity the Pt/C catalyst with the size of platinum particles 65–70 nm, but are inferior to catalysts based on fullerene black with the average size of platinum particles 3–4 nm.  相似文献   

12.
非金属碳基催化剂因其具有合成简单、结构稳定、比表面积大、可调控性强等特点受到了研究者的关注,已成为最活跃的研究领域之一。以二维、单原子层、六方结构的碳为基础的石墨烯和其高度氧化形态——氧化石墨烯是一类新兴的碳基材料。这类材料在催化领域的应用在近五年内才刚刚兴起。此类材料可用于烃类转化、有机化学合成、能源转化等多种催化反应,本文主要综述了采用化学氧化还原法制备的石墨烯和氧化石墨材料为催化剂的各类催化反应的最新研究进展。  相似文献   

13.
Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors.  相似文献   

14.
The most successful electrochemical conversion of ammonia from dinitrogen molecule reported to date is through a Li mediated mechanism. In the framework of the above fact and that Li anchored graphene is an experimentally feasible system, the present work is a computational experiment to identify the potential of Li anchored graphene as a catalyst for N2 to NH3 conversion as a function of (a) minimum number of Li atoms needed for anchoring on graphene sheets and (b) the role of chemical modification of graphene surfaces. The studies bring forth an understanding that Li anchored graphene sheets are potential catalysts for ammonia conversion with preferential adsorption of N2 through end-on configuration on Li atoms anchored on doped and pristine graphene surfaces. This mode of adsorption being characteristic of Nitrogen Reduction Reaction (NRR) through enzymatic pathway, examination of the same followed by analysis of electronic properties demonstrates that tri-Li atoms (Tri Atom Catalysts, TACs) are more efficient as catalysts for NRR as compared to two Li atoms (Di Atom Catalysts, DACs). Either way, the rate determining step was found to be *NH2→*NH3 step (mixed pathway) with ΔGmax=1.02 eV and *NH2−*NH3→*NH2 step (enzymatic pathway) with ΔGmax=1.11 eV for 1B doped TAC and DAC on graphene sheet, respectively. Consequently, this work identifies the viability of Li anchored graphene based 2-D sheets as hetero-atom catalyst for NRR.  相似文献   

15.
Catalytic natures of organometallic catalysts are modulated by coordinating organic ligands with proper steric and electronic properties to metal centers. Carbon‐based nanomaterials such as graphene nanoplatelets are used with and without N‐doping and multiwalled carbon nanotube as a ligand for ethylene polymerizations. Zirconocenes or titanocenes are immobilized on such nanomaterials. Polyethylenes (PEs) produced by such hybrids show a great increase in molecular weight relative to those produced by free catalysts. Specially, ultra‐high‐molecular‐weight PEs are produced from the polymerizations at low temperature using the hybrid with N‐doped graphene nanoplatelets. This result shows that such nanomaterials act a crucial role to tune the catalytic natures of metallocenes.  相似文献   

16.
The increase of atmospheric CO2 concentration has caused many environmental issues. Electrochemical CO2 reduction reaction(CO2RR) has been considered as a promising strategy to mitigate these challenges. The electrocatalysts with a low overpotential, high Faradaic efficiency, and excellent selectivity are of great significance for the CO2RR. Carbon-based materials including metal-free carbon catalysts and metal-based carbon catalysts have shown great p...  相似文献   

17.
In the present work, the ability of two ruthenium hydride catalysts supported on multiwall carbon nanotubes, [Ru–H@EDT–MWCNT], and gold nanoparticles cored triazine dendrimer, [Ru–H@AuNPs–TD], in the direct conversion of alcohols to carboxylic acids via transfer hydrogenation using styrene oxide as oxidant is reported. Different alcohols were successfully converted to their corresponding carboxylic acids. The results showed that these two heterogeneous catalysts are more efficient than the homogeneous counterpart. In addition, the catalysts were reused several times.  相似文献   

18.
《Electroanalysis》2017,29(5):1469-1473
The development of vanadium redox flow battery is limited by the sluggish kinetics of the reaction, especially the cathodic VO2+/VO2+ redox couples. Therefore, it is vital to develop new electrocatalysts with enhanced activity to improve the battery performance. Herein, we synthesized the hydrogel precursor by a facile hydrothermal method. After the following carbonization, nitrogen‐doped reduced graphene oxide/carbon nanotube composite was obtained. By virtue of the large surface area and good conductivity, which are ensured by the unique hybrid structure, as well as the proper nitrogen doping, the as‐prepared composite presents enhanced catalytic performance toward the VO2+/VO2+ redox reaction. We also demonstrated the composite with carbon nanotube loading of 2 mg/mL exhibits the highest activity and remarkable stability in aqueous solution due to the strong synergy between reduced graphene oxide and carbon nanotubes, indicating that this composite might show promising applications in vanadium redox flow battery.  相似文献   

19.
Efficient oxidation of alcohols with tert-butyl hydroperoxide catalyzed by Mo(CO)6 supported on multiwall carbon nanotubes modified with 4-aminopyridine is reported. The effect of various parameters such as catalyst amount, solvent and oxidant was studied. The catalyst, [Mo(CO)5@APy-MWCNT], showed high activity not only in the oxidation of benzylic and linear alcohols but also in the oxidation of secondary alcohols. The catalyst can be reused several times without significant loss of its activity.  相似文献   

20.
Chen-Yu Tsai  Bo-Ren Zhuang 《Tetrahedron》2010,66(34):6869-6872
TiCl4-activated selective nucleophilic substitution reactions of tert-butyl alcohol and benzyl alcohols with π-donating substituents in the presence of primary and secondary alcohols can be carried out with various oxygen, nitrogen and carbon nucleophiles in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号