首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this work, we report the luminescent organic–inorganic hybrid materials prepared by hydrolysis and condensation of sylilated β-diketone under acid conditions in the presence of carboxyl-functionalized ionic liquid in which Eu3+ ions are coordinated to the oxygen atoms of carboxylate groups from the ionic liquids. The obtained materials were characterized with FT-IR, TG and photoluminescence spectroscopy. FT-IR spectra imply that Eu3+ ions are still coordinated to the ionic liquid in the hybrid materials. Excitation and emission spectra demonstrate that the energy transfer occurs from the β-diketone molecules covalently bonded with silica to Eu3+ ions. The Eu3+ (5D0) quantum efficiency value of the hybrid materials has been estimated based on the emission spectrum and the value of lifetime. A large value of ratio (16.44) between the intensities of the 5D07F2 and 5D07F1 transition and high value of 5D0 quantum efficiency (51.01%) are obtained.  相似文献   

3.
Three new organic–inorganic hybrid materials based on two important heteropolyoxometalates namely Preyssler (=K12.5H1.5[Na(H2O)P5W30O110]·35H2O) and Wells–Dawson (=K6[P2W18O62]·10H2O) anions, namely, (Hpro)9(Hleu)3K2[Na(H2O)P5W30O110]·25H2O (1), (Hpro)4(Hasp)[HP2W18O62]·20H2O (2), and (Hpro)11K3[Na(H2O)P5W30O110]·18H2O (3) where pro, leu, and asp are proline, leucine, and asparagine, respectively, were prepared and identified by elemental analysis, infrared and proton nuclear magnetic resonance spectroscopies, and thermogravimetric analysis. The hybrid materials are made up of positively charged amino acids, [Na(H2O)P5W30O110]14? and [P2W18O62]6? anions, and H2O molecules of crystallization. These constituents’ fragments held together into a three-dimensional supermolecular network through non-covalent interactions. The protonation constants of the amino acids used, and Preyssler and Wells–Dawson species in all possible protonated forms, the equilibrium constants for binary systems of proline–asparagine and proline–leucine, and the stoichiometry and stability constants of the corresponding binary and ternary hybrids with Preyssler and Wells–Dawson heteropolyoxometalates in aqueous solution were investigated by potentiometric pH titration method. The stoichiometries of the most hybrid species in solution were compared with the corresponding hybrids in the solid phase, in detail.  相似文献   

4.
We show here how luminescence of fluorescent dyes and lanthanide complexes in sol–gel matrix can be intensified as a result of interaction of the species with silver nanoparticles. Preparation of silver nanoparticles in sol–gel composite precursor is outlined and their structural characterization are presented. Zirconia-glymo and Glymo-polyurethane-silica were used as host matrices for silver nanoparticles and the fluorescence species. The intensification of fluorescence was demonstrated by steady state spectroscopy.  相似文献   

5.
The applications of zerovalent iron nanoparticles (nZVI) exploit their high reactivity which decreases due to oxidation in aerobic conditions during manufacture, application, and storage. In this study, we present the new procedure for estimation of the nZVI stability to oxidation in air. The procedure is suitable for characterization of the novel materials based on the supported nZVI. Nanoscale particles were synthesized inside porous silica supports by incipient wetness impregnation with the metal precursor solutions followed by thermal treatment. The TG–DTA studies revealed the decomposition temperature of the supported precursors, as well as the interaction of Fe and precious metal precursors, which resulted in the formation of alloy nanoparticles. Characterization of the samples by XRD confirmed the formation of the nanoparticles of the metallic Pd, Pt, and Fe phases supported on SiO2 carriers, as well as the formation of solid solutions based on the structure of precious metals. The new procedure for estimation of the nZVI stability included (1) TPR with hydrogen up to 400–425 °C followed by isothermal reduction at these temperatures; (2) in situ reoxidation with oxygen at room temperature. The samples were reduced “as obtained” and after in situ reoxidation. The results of the TPR studies exhibited that introduction of both Pd and Pt protected the Fe nanoparticles from oxidation with oxygen and air at ambient conditions.  相似文献   

6.

The synthesis of phase change materials based on NaCl–CaCl2 molten salt mixture and mesoporous silica was investigated. The influence of mesoporous silica porosity and salt concentration on the thermal energy storage properties of the resulting materials is discussed. The nanocomposite samples were characterized by X-ray diffraction, differential scanning calorimetry, infrared spectroscopy, thermogravimetry, scanning electron microscopy and X-ray photoelectron spectroscopy. The mesoporous silica was found to act as a reactive matrix for the molten salts. Composite samples with up 95% wt. salt can be obtained and used as shape-stabilized phase change materials. The materials have heat of fusion values of up to 60.8 J g?1 and specific heat capacity between 1.0 and 1.1 J g?1 K?1. The samples exhibit thermal stability up to 700 °C and can be used for high-temperature thermal energy storage through both latent and sensible heat storage mechanisms.

  相似文献   

7.
Journal of Thermal Analysis and Calorimetry - Poly(butylene succinate) (PBS) nanocomposites filled with nanoprecipitated calcium carbonate (NPCC) were prepared via melt blending. The hybrid...  相似文献   

8.
The aim of this study was to obtain a hybrid material based on a polymer photonic crystal core and inorganic ZnO shell with potential applications in optoelectronic devices or photocatalysts. For this reason, ZnO particles were obtained both in the absence and presence of ST–AA particles using a chemical reduction method for metal salts. The inhibited growth mechanism of inorganic particles generated in the presence of polymer latex was noticed. The products were characterized by SEM, EDX, TEM, DLS, and UV–vis.  相似文献   

9.
Our recent progress in porous materials based on organic–inorganic hybrids, organic crosslinked polymers, and carbons is summarized. Flexible aerogels and aerogel-like xerogels with the polymethylsilsesquioxane (PMSQ) composition are obtained using methyltrimethoxysilane (MTMS) as the sole precursor. Preparation process and the flexible mechanical properties of these aerogels/xerogels are overviewed. As the derivative materials, hierarchically macro- and mesoporous PMSQ monoliths and marshmallow-like soft and bendable porous monoliths prepared from dimethyldimethoxysilane /MTMS co-precursors have been obtained. Organic crosslinked polymer monoliths with well-defined macropores are also tailored using gelling systems of vinyl monomers under controlled/living radical polymerization. The obtained polymer monoliths are carbonized and activated into activated carbon monoliths with well-defined pore properties. The activated carbon monoliths exhibit good electrochemical properties as the monolithic electrode. Some possibilities of applications for these porous materials are also discussed.  相似文献   

10.
Sodium and lithium cobaltates are important materials for thermoelectric and battery applications due to their large thermoelectric power and ability to (de-) intercalate the alkali metal. For these applications, phase pure materials with controlled microstructure are required. We report on the sol?Cgel synthesis of sodium- and lithium-based materials by using acetate precursors. The produced Na2/3CoO2, Li(Ni1/3Mn1/3Co1/3)O2, and Li(Ni1/2Co1/2)O2 powders are phase pure with grain sizes below 1???m. X-ray diffraction and energy-dispersive spectral analyses show that the cation stoichiometry is preserved in the lithium-based compounds. Despite the low temperatures, the sodium content is reduced by 1/3 as compared to the initial value. Chemical phases of the investigated powders are formed in the sol?Cgel route at temperatures typically 100?C200?K lower than those used in the conventional solid-state synthesis of these materials. The suggested sol?Cgel synthesis is a low temperature process suited for production of phase pure and homogeneous materials with volatile cations.  相似文献   

11.
Well-defined tungsten-oxide-supported platinum nanoparticles (Pt/WOx) were elaborated by impregnation-reduction of a platinum salt onto commercial monoclinic WO3. Field-emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM) revealed that the Pt particles are well-distributed on the oxide support, present a narrow particle size distribution centered on ca. 2–3 nm and a low degree of agglomeration. Carbon black was added to ensure electronic percolation in the electrodes during the electrochemical measurements. COads electrooxidation currents were monitored at potentials as low as 0.1 V vs. RHE on Pt/WOx, demonstrating high CO-tolerance compared to carbon-supported Pt or PtRu catalysts.  相似文献   

12.
Scientists have developed techniques for synthesizing and characterizing many new materials including conjugated small molecules, polymers and gold particles protected by conjugated organic chromophores for testing specific sensing properties in the past decade. Still, the design and synthesis or supermolecular systems fabrication of novel materials with controlled sensing properties is a significant and ongoing challenge within nanoscience and nanotechnology. Recently, our group has successfully constructed a series of chemosensors using small organic molecules, conjugated polymers and gold nanoparticles for real-time detection of specific analytes. The chemosensors show high selectivity and sensitivity in the detection of cations and biologic analytes and thus are potentially promising for applications in sensing assay system. In this review, recent sutdies on the design, synthesis and photo-physical properties of novel materials and construct of chemosensors are summarized with an emphasis on the development in our groups in recent years. Supported by the National Natural Science Foundation of China (Grant Nos. 20531060, 20721061 & 20873155), and the National Basic Research 973 Programme of China (Grant No. 2007CB936401)  相似文献   

13.
A novel CuS–graphene (CuS-Gr) composite was synthesized to achieve excellent electrochemical properties for application as a DNA electrochemical biosensor. CuS-Gr composite was prepared by a hydrothermal method, in which two-dimensional graphene served as a two-dimensional conductive skeleton to support CuS nanoparticles. A sensitive electrochemical DNA biosensor was fabricated by immobilizing single-stranded DNA (ss-DNA) labeled at the 5′ end using 6-mercapto-1-hexane (HS-ssDNA) on the surface of Au nanoparticles (AuNPs) to form ssDNA-S–AuNPs/CuS-Gr, and hybridization sensing was done in phosphate buffer. Cyclic voltammetry and electrochemical impedance spectroscopy were performed for the characterization of the modified electrodes. Differential pulse voltammetry was applied to monitor the DNA hybridization using an [Fe(CN)6]3?/4? solution as a probe. Under optimum conditions, the biosensor developed exhibited a good linear relationship between the current and the logarithm of the target DNA concentration ranging from 0.001 to 1 nM, with a low detection limit of 0.1 pM (3σ/S). The biosensor exhibited high selectivity to differentiate one-base-mismatched DNA and three-base-mismatched DNA. The results indicated that the sensing platform based on CuS-Gr provides a stable and conductive interface for electrochemical detection of DNA hybridization, and could easily be extended to the detection of other nucleic acids. Graphical abstracts
?  相似文献   

14.
The possibility of using new carbon–carbon composites as supports for a copper catalyst for ethanol dehydrogenation was demonstrated. The composites, which represented carbon nanostructures (single-walled carbon nanotubes or carbon nanofibers) attached to the surface of carbon microfibers, were prepared by essentially different procedures. Copper catalysts deposited on these supports exhibited different activity in the ethanol conversion, which is associated with the distribution and size of copper particles.  相似文献   

15.
Nanoclusters of Pt, Pt–Rh, Pt–SnO2 and Pt–Rh–SnO2 were successfully synthesized by polyol method and deposited on high-area carbon. HRTEM and XRD analysis revealed two phases in the ternary Pt–Rh–SnO2/C catalyst: solid solution of Rh in Pt and SnO2. The activity of Pt–Rh–SnO2/C for ethanol oxidation was found to be much higher than Pt/C and Pt–Rh/C and also superior to Pt–SnO2/C. Quasi steady-state measurements at various temperatures (30–60 °C), ethanol concentrations (0.01–1 M) and H2SO4 concentrations (0.02–0.5 M) showed that Pt–Rh–SnO2/C is about 20 times more active than Pt/C in the potential range of interest for the fuel cell application.  相似文献   

16.
The hybrid inorganic/organic nanopapers based on bacterial cellulose and different type of sol–gel synthesized nanoparticles are fabricated. A simple, rapid, low-cost pathway based on a diffusion step of sol–gel nanoparticles into swollen bacterial cellulose membrane via orbital incubator is developed. This alternative pathway allows to keeping intact the 3D network of the bacterial cellulose membrane while sol–gel nanoparticles are formed in situ and anchored on the nanofibers surface. Titanium, vanadium oxide nanoparticles and a mixture of both are used to functionalize bacterial cellulose membrane. Fabricated hybrid inorganic/organic nanopapers are characterized by thermogravimetric analysis, X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, MTS mechanical testing, UV–vis spectroscopy, colorimeter and semiconductor analyzer. Synthesized photochromic hybrid nanopapers modified with vanadium and titanium oxide nanoparticles can find potential application as sensitive displays, biosensors and other optical devices.  相似文献   

17.
The electrochemical oxidation of methanol was investigated on a Pt–Ru–Mo catalyst with an in situ infrared reflectance spectroscopy. The electrocatalysts were prepared by an electrochemical deposition and dispersed in a conducting three-dimensional matrix of polyaniline (PAni). We observed that CO2 is produced from methanol oxidation at 350 mV vs. RHE on PAni/Pt–Ru–Mo, which is 100 mV less negative than on PAni/Pt–Ru and 200 mV less than on PAni/Pt. The results suggest that Pt–Ru–Mo is less sensitive to COADS poisoning than Pt–Ru and much more sensitive than Pt. Large differences are observed concerning the average wavenumber of ADS between Pt–Ru–Mo, Pt–Ru, and Pt.  相似文献   

18.
A series of diamide?Cdiimide?Cdiamines (DADIDAs) were synthesized by reacting diacid N,N??-(3,3??,4,4??-benzophenone tetracarboxylic)-3,3??4,4?? diimido-bis-l-phenylalanine (I) with different aromatic diamines viz. 1,4-phenylene diamine (PD), 1,5-diamino naphthalene (N), 4,4??-(9-fluorenyllidene)-dianiline (F), 4,4??-diaminodiphenyl sulphide (DS) and 3,4??-oxydianiline (O). The diacid (I) was synthesized by the condensation of 3,3??,4,4??-benzophenone tetracarboxylic dianhydride (BTDA) with l-phenylalanine (PA) in a solution of glacial acetic acid and pyridine (3:2 v/v) at refluxing temperature. The resulting DADIDAs so synthesized were characterized with the help of elemental analysis (EA) and spectroscopic techniques, and were used as epoxy curing agents. Two epoxy blends (EP and ES) were prepared, each by mixing in an equivalent ratio of 2:3 of tris(glycidyloxy)phosphine oxide (TGPO) with diglycidyl ether of bisphenol-A (DGEBA) and 1,3-bis(3-glycidyloxypropyl)tetramethyl disiloxane (BGPTMSO) with diglycidyl ether of bisphenol-A (DGEBA), respectively. A series of new epoxy thermosets with good thermal stability were prepared by reacting EP/ES with synthesized DADIDAs stoichiometrically. Thermal properties of these epoxy resins were observed using the techniques viz. Differential scanning calorimeter (DSC) for curing behaviour and Thermogravimetric analysis (TGA) to study the thermal stability and mass loss behaviour. All the samples showed good thermal stabilities in terms of char yield (24.8?C52.7) and calculated LOI (27.4?C38.6), thereby demonstrate their effective use as flame retardant systems.  相似文献   

19.
Carbon-supported Pt–Ni alloy nanoparticles with various compositions were prepared by a borohydride reduction method in anhydrous ethanol solvent. Here, we surveyed effect of thermally induced de-alloying on activity of the oxygen reduction reaction (ORR). Especially, changes in surface and bulk structures were investigated through electrochemical and spectroscopic measurements. The activity of as-prepared Pt–Ni alloy nanoparticles showed a monotonous dependence on Pt content. However, heat-treatment induced the phase separation between Pt and NiO and the resultant enhancement in ORR activity without significant increase in surface Pt concentration.  相似文献   

20.
Luminescent organic–inorganic hybrid materials containing immobilized lanthanide(III) complexes (Ln = Nd, Eu, Tb, Yb) with modified ethylenediaminetetraacetic and diethylenetriaminepentaacetic acid were synthesized by sol–gel method. Obtained hybrids exhibit 4f-luminescence in the visible (Eu(III) and Tb(III)) and IR-region (Nd(III) and Yb(III)). The influence of the hybrid matrix on the lanthanide luminescence was established and it was shown, that the location of resonance level of Eu(III) is optimal for efficient energy transfer from matrix, while in the case of Tb(III) energy transfer does not occur and Tb(III) is able to absorb energy only due to its own week f–f transitions. It was also established that the inorganic matrix leads to elimination of nonradiative energy losses and increase of 4f-luminescence lifetimes. Covalent binding of Ln(III) aminopolycarboxylates in the matrix allows to consider obtained materials as promising for creation of photo- and chemically-stable luminescent sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号