首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The thermodynamic and kinetic parameters of the cerium(IV) complexes formed in the initial stage of oxidation of dicarboxylic acids (H2L), like pentanedioic, butanedioic, propanedioic, and ethanedioic acids, by cerium(IV) sulfate were studied by the spectrophotometric and pH-potentiometric methods with the aid of integral kinetic methods at an ionic strength I = 2 mol/L within the pH range of–0.3–1.6 in a sulfuric acid medium and at temperature of 293.15 K. The composition of these complexes, the form of organic ligand existence therein, the thermodynamic parameters of their formation, and the kinetic parameters of their intramolecular redox decomposition were determined. Linear correlations between the found thermodynamic and kinetic parameters of the examined complexes [CeOHL]+ were obtained. The rate equation of the redox process occurring in the systems Ce4+–H2L was established and the corresponding reaction model was considered.  相似文献   

2.
Intermediate cerium(IV)-citrate complexes formed at the first stage of the oxidation of citric acid (Citr) with cerium(IV) were studied spectrophotometrically and pH-potentiometrically at ionic strength I = 2 (sulfate medium). Their composition and the form of the organic ligand present in them, the thermodynamic parameters of their formation, and the kinetic parameters of intramolecular redox decomposition were determined. A detailed scheme of the initial stages of the redox process in the Ce4+-SO 4 2? -Citr system was considered, and the law of its initial rate and intermediate mechanism were determined. The results were compared with the corresponding data on several oxycarboxylic acids and polyhydric alcohols. The inverse linear correlation was found between the logarithms of stability constants and the logarithms of rate constants for intramolecular redox decomposition of [(CeOH)H?2R]+ complexes with dibasic ligands of the type R = H2L, H(OH)L, and L(OH)2. The stabilizing role played by ligand oxy groups in these complexes was demonstrated.  相似文献   

3.
The compositions, stability constants, and rate constants of intramolecular redox decomposition of cerium(IV) complexes with anions of aminoacetic (H2NCH2COOH), iminodiacetic [HN(CH2COOH)2], nitrilotriacetic [N(CH2COOH)3], ethylenediaminetetraacetic [(CH2COOH)2N(CH2)2N(CH2COOH)2], and hexamethylenediaminetetraacetic [(CH2COOH)2N(CH2)6N(CH2COOH)2] acids were determined by potentiometric, spectrophotometric, and kinetic methods at pH in the range 1.3?2.0 in perchlorate and nitrate media at an ionic strength I = 0.1 and a temperature of 298.15 K. Direct linear correlation between the logarithms of the stability constants of the complexes, log β101, and logarithms of the cumulative protonation constants, log В m+k (k = 1–2), of aminopolyacetic acid anions L m–, and inverse linear correlation between log β101 and logarithms of the rate constants of intramolecular redox decomposition of the complexonates [CeL]4–m (m = 1–4), log k n=1, were found.  相似文献   

4.
The kinetics of the oxidation of lactic and atrolactic acids by ceric sulfate have been studied in the medium HClO4-Na2SO4-NaClO4 at 25.0°C and ionic strength 2.0 mol dm?3 over a wide range of organic substrate (HL), hydrogen and bisulfate ion concentrations. The redox reactions proceed significantly through three simultaneous paths involving intermediate complexes between the reactive cerium(IV) species and the organic substrate according to the following expression where kobs indicates the observed pseudo-first-order rate constant, b and c are rate constants relative to that for the path associated with the term [H+] in the numerator, and A' is a quantity depending on the [H+] and [HSO] concentrations. Moreover, three equilibria involving cerium(IV) and HSO (or SO) ions are important from a kinetic point of view, the cumulative equilibrium constants being in the ratios β1: β2: β3 = d1: e1: f1. The present data are compared with those obtained previously for the cerium(IV) oxidation of glycolic acid and the substituent effects discussed.  相似文献   

5.
Tellurite of the composition Li2CeTeO5 is synthesized by solid-phase method from cerium(IV) and tellurium(IV) oxides and lithium carbonate. The type of syngony, the unit cell parameters, and the compound’s X-ray and pycnometry densities are determined via X-ray diffraction analysis. The isobaric heat capacity of lithium–cerium tellurite is studied by means of dynamic calorimetry in the temperature range of 298.15–673 K; the results serve as the basis for deriving C p ° ~ f(T) dependency equations and determining the compound’s thermodynamic functions. λ-shaped anomalous effects, due probably to Type II phase transitions, are found on the C p ° ~ f(T) dependence.  相似文献   

6.
A new coordination polymer, [Cd(HMal)(Bipy)(H2O) · 2H2O (I) (H3Mal is malic acid, Bipy is 4,4′-bipyridine), has been synthesized from H3Mal and Bipy under hydrothermal conditions and characterized by elemental analysis, IR, TG, and single-crystal X-ray diffraction. The X-ray diffraction analysis reveals that I (C14H16N2O7Cd) crystallizes in the orthorhombic system, space group Ibam. The adjacent cadmium(II) atoms were first interconnected by the HMal ligands via carboxylate oxygen atoms and its adjacent hydroxyl group to generate an infinite zigzag [Cd(HMal)] n chain, which are further linked by Bipy ligands to form a 2D wavelike layer. Interestingly, the adjacent layers are further connected via hydrogen bonds, giving rise to a 3D porous framework with a cross-sectional area of 11.690 × 9.326 Å2. The unit cell parameters for I: a = 8,457(1), b = 22.030(7), c = 23.066(7) V = 4297(2) Å3, Z = 4.  相似文献   

7.
A new method has been proposed for the synthesis of transition metal complexes with the trans-[B20H18]2– dianion from complexes with the closo-decaborate anion [B10H10]2– without changing the cationic part of the complex. A cerium(IV) salt has been used as an oxidizing agent. Complexes [NiL3][trans-B20H18] (L = Bipy, Phen) have been identified by elemental analysis and IR spectroscopy.  相似文献   

8.
Kinetics and mechanism of the cerium(IV) oxidation of Cr(III) complexes of a series of macrocyclic (or pseudomacrocyclic) ligands with [14]-membered intraligand ring-sizes have now been investigated at I = 1.0 M (LiClO4) Temp. 30°C. The complexes of the formulation Cr(macrocycle)(X)(H2O) where X = CHCl2 and H2O, n = 0 or 1 undergo oxidation to Cr(VI) with the formation of chromium(IV) intermediates. The observed kinetic parameters for the Ce(IV) oxidation of Cr(III) macrocyclic complexes have been discussed in terms of changes brought about by the macrocyclic ligands on the Cr(III)—Cr(IV) redox potentials and in specific rates for Cr(IV)—Cr(V) conversion. On the basis of this study, it has been suggested that the trapping of Cr(IV) is easier when a macrocyclic ligand having a symmetrical intra-ligand ring size and unsaturation in the cyclic structure is coordinated equatorially. Cyclic voltammetric studies indicate the formation of Cr(IV) transient in the case of electrochemical oxidation of trans-Cr(Me4[14]tetraene)(H2O).  相似文献   

9.
Herein, the catalytic properties of the cerium (IV) salt, cerium (IV)-sandwiched polyoxometalate (POM) and cerium (IV)-sandwiched polyoxometalate intercalated in layered double hydroxides (LDHs) in the H2O2-based green oxidation reactions have been evaluated. These cerium (IV)-based systems were applied as homogeneous and heterogeneous catalysts for the oxidation of pyridines. Despite the fact that the cerium (IV)-sandwiched polyoxometalate as a homogeneous reaction system gives good results, there are some disadvantages in recovery and reusability process. To overcome these problems, new nano catalyst was synthesized by intercalation of the Cerium (IV)-sandwiched polyoxometalate into tris(hydroxymethyl) aminomethane-modified layered double hydroxides (Tris-LDH-CO3). The as-prepared nanocomposite was characterized and used as an effective heterogeneous catalyst for the oxidation of pyridines under mild conditions in the presence of H2O2 as an oxidant. The new heterogeneous nanocomposite can be recovered and reused easily from the reaction media at least ten times without significant decrease in catalytic activity.  相似文献   

10.
The kinetics of the cerium(IV) oxidation of glycolic acid have been studied in the medium HClO4? Na2SO4? NaClO4 at varying organic substrate (HL), hydrogen, and bisulfate ion concentrations at 25.0°C and ionic strength 2.0M. Under the experimental conditions used (0.03 ? [H+] ? 0.5M; 0.02 ? [HSO4?] ? 0.1M; 0.01 ? [HL] ? 0.1M) the observed pseudo-first-order rate constant kobs has been found to follow the complex expression where the values of the various constants have been estimated by a nonlinear least-squares method. According to this expression the oxidation process occurs significantly through three simultaneous pathways. Moreover three equilibria involving cerium(IV) and HSO4? (or SO42?) ions are important from a kinetic point of view, whereas only two equilibria involving the corresponding complexes with the organic substrate are predominant.  相似文献   

11.
The coordination compound [Co(L)(Mal)(H2O)2]H2O (I) (L is benzhydrazide, H2Mal is malonic acid) has been synthesized and studied by IR spectroscopy, thermogravimetry, and X-ray diffraction. Crystals are triclinic, a = 7.610(4) Å, b = 7.854(2) Å, c = 12.751(2) Å, α = 75.12(3)°, β = 88.01(3)°, γ = 80.26(3)°, Z = 2, space group \(P\bar 1\). The structure is molecular. The Co2+ atom has a distorted octahedral coordination. The Co-O and Co-N bond lengths are 2.031-2.129(4) and 2.157(5) Å, respectively. The endocyclic O1Co1N1 bond angles are 77.3(2)° and 90.0(2)° in the five- and six-membered chelate rings, respectively. Molecules of complex I are linked via a great number of hydrogen bonds. The C…C contacts between phenyl rings additionally strengthen the structure.  相似文献   

12.
A kinetic analysis of the oxidation of semicarbazide (SEM) by the single-electron oxidant [IrCl6]2? has been carried out by stopped-flow spectrometric techniques. The reaction proved to be first order each in [IrCl6 2?] and [SEM]tot, leading to overall second-order kinetics. The variation in the observed second-order rate constant k′ with pH was explored over the pH range of 0–7.11. Spectrophotometric titration revealed a stoichiometry of Δ[IrCl6 2?]/Δ[SEM]tot = 4:1 for the redox reaction. On the basis of the rate law, the redox stoichiometry, and the rapid scan spectra, a reaction mechanism is proposed which involves parallel attacks of [IrCl6]2? on both H2NCONHNH3 + and H2NCONHNH2 as rate-determining steps, followed by several rapid reactions. The rate expression, derived from the reaction mechanism, was utilized to simulate the k′–pH profile yielding a virtually perfect fit and indicating that the reaction path involving H2NCONHNH3 + does not make a significant contribution to the overall rate. The reaction between [IrCl6]2? and H2NCONHNH2 was further studied as a function of both temperature and ionic strength. From the temperature dependence, activation parameters were obtained as: ?H 2 ?  = 34.9 ± 1.5 kJ mol?1 and ?S 2 ?  = ?78 ± 5 J K?1 mol?1. The observed ionic strength dependence suggests that the rate-determining step is between [IrCl6]2? and a neutral species of SEM. Hence, both the temperature and ionic strength dependency studies are in good agreement with the proposed reaction mechanism, in which the rate-determining step involves an outer sphere electron transfer.  相似文献   

13.
The results on the synthesis and study of the crystal structures of compounds based on anionic fragments {VO(Cbdc)2}2– formed by oxovanadium(IV) (vanadyl, VO2+) and two chelate-bound anions of cyclobutane-1,1-dicarboxylic acid (H2Cbdc = C4H6(COOH)2) are presented. The use of ammonium cation NH4+ as a counterion in the synthesis leads to the formation of the mononuclear complex (NH4)2[VO(Сbdc)2(H2O)] · 2H2O (I). In the case of K+ cation, compound [K4(VO)2(Сbdc)4(H2O)4] n (II) with the 3D polymeric crystal structure is formed. The reaction of compound II with Mg(NO3)2 · 6H2O in an aqueous solution involves the partial substitution of K+ by Mg2+ cations to form 1D polymeric compound {[KMg0.5(VO)(Сbdc)2(H2O)6.5] · 3H2O} n (III), while a similar reaction of compound I does not afford the product of substitution of NH4+ by Mg2+ cations (CIF files CCDC 1551021–1551023 for compounds IIII, respectively).  相似文献   

14.
A mononuclear dioxo vanadium(V) complex of a hydrazone ONO donor ligand, [VVO2(L1)] (1), was synthesized by the reaction of V2O5 and terephthalic acid with H2L1 in 1:1:1 mol ratio, while an oxo-bridged bis(vanadium(IV)oxo) complex, [μ 2–O–{VIVO(L2)}2] (2), was synthesized by the treatment of isonicotinic acid hydrazide, salicylaldehyde and CoSO4·7H2O with bis(acetylacetonato)oxovanadium(IV) (H2L1 = isonicotinic acid(2-hydroxy-benzylidene)-hydrazide, H2L2 = isonicotinic acid (1-methyl-3-oxo-butylidene)-hydrazide). The complexes were characterized by elemental analyses and spectroscopic methods. The crystal structure of complex 2 was determined by X-ray analysis. The complexes were tested as catalysts for the oxidation of cycloalkenes and benzyl alcohol using H2O2 as terminal oxidant. Excellent selectivity was achieved in the oxidation of cyclohexene.  相似文献   

15.
The kinetics and mechanism of cerium(IV) oxidation of hexitols, i.e. D ‐sorbitol and D ‐mannitol, in aqueous sulfuric acid media have been studied in the presence and absence of surfactants. Under the kinetic conditions, [S]T ? [Ce(IV)]T, where [S]T is the total substrate (D ‐sorbitol or D ‐mannitol) concentration, the overall process shows a first‐order dependence on [Ce(IV)]T and [S]T. The process is acid catalyzed and inhibited by [HSO]. From the [HSO] dependence, it has been noted that the both Ce(SO4)2+ and Ce(SO4)2 have been found kinetically active. The different rate constants in the presence and absence of surfactants have been estimated with the activation parameters. N‐cetylpyridinium chloride has been found to retard the oxidation process of hexitols, whereas sodium dodecyl sulfate has been found to accelerate the rate process. All these findings including the micellar effects have been interpreted in terms of the proposed reaction mechanism and partitioning behavior of the kinetically active different species of Ce(IV) between the aqueous and pseudomicellar phase. © 2008 Wiley Periodicals, Inc. 40: 445–453, 2008  相似文献   

16.
Compositions of mixed ligand acetate, propionate, and pivalate complexes of rare earth metals of the cerium and yttrium groups with monoethanolamine are predetermined by the synthesis conditions and the nature of the carboxylate ligand and rare earth metal ion. Solid mixed ligand complexes [Ln(Piv)5(MEAH)][MEAH] and [Ln(Piv)3(MEA)], homoligand complexes [Ln(Piv)3] (HPiv is 2,2-dimethylpropionic (pivalic) acid), and gel-like hydroxo complexes [Ln(Carb)3–xy (NO3) x -(OH) y (MEA) w (H2O) z ] (HCarb is acetic (HAc) or propionic (HProp) acid) are isolated using original synthesis procedures involving ion pairs [MEAH]+[Carb] (MEA is monoethanolamine). The compounds are studied by IR spectroscopy, 1H NMR spectroscopy, elemental and thermal analyses, and mass spectrometry. Specific features for the complex formation of rare earth metal pivalates with MEA are additionally studied using quantum-chemical simulation.  相似文献   

17.
A new azacrown bis-macrocycle (5) and its mono–cyclic analogue (7) were synthesized and characterized by FT-IR, 1H NMR, 13C NMR, DEPT 13C NMR, MS, and elemental analysis. The reaction with copper(II) nitrate yielded the corresponding complexes, formulated as Cu(5)(NO3)2·3H2O (8), and Cu(7)(NO3)2·2.5H2O (9). Also the stoichiometries of the complexes were determined in alcoholic solution and the results show that for both complexes the ratio of ligand to metal was 1:1 in methanol. The redox behavior of both complexes has been studied by cyclic voltammetry in DMF. Cyclic voltamogram of 8 shows quasi-reversible CuII/CuI redox couple whereas 9 shows a reversible CuII/CuI redox couple. Mono- and bis-macrocycle copper(II) complexes (8 and 9 respectively) cleaved plasmid pGS2 DNA by using an oxidative mechanism with 3- mercaptopropionic acid (MPA) as the reductant under aerobic conditions. The bis-macrocycle copper(II) complex 8 showed higher cleavage efficiency than their mono-macrocycle analogue 9 at the same Cu2+ concentration.  相似文献   

18.
It has been proposed to conduct the synthesis of cerium(III) orthophosphates by reacting cerium(IV) compounds with hydrogen peroxide in the presence of concentrated orthophosphoric acid at ambient temperature. It has been shown that the reaction of H2O2 with CeO2 suspensions in H3PO4 medium produces CePO4 · xH2O (rhabdophane structure), while that with CeO2 solutions in concentrated H3PO4 results in CePO4 (monazite structure).  相似文献   

19.
The effect of solvent on the stability and reactivity of methyltrioxorhenium (MTO) for activation of hydrogen peroxide (H2O2) was investigated theoretically. The possible geometries for all Re complexes present in this system, MTO, monoperoxo complexes [A: MeReO2(η 2–O2) and A·H 2 O: MeReO2(η 2–O2)(H2O)], and bisperxo complexes [B: MeReO(η 2–O2)2 and B·H 2 O: MeReO(η 2–O2)2(H2O)] were calculated. Based on the theoretical calculations, species A lacks coordinated water while species B·H 2 O definitely has water coordinated to the Re. The changes of thermodynamic parameters (ΔH and ΔG) for six reactions in the MTO/H2O2, system including formation of mono- and bisperoxo complexes, were determined.  相似文献   

20.
The kinetics of oxidation of ethanol by cerium(IV) in presence of ruthenium(III) (in the order of 10?7 mol dm?3) in aqueous sulfuric acid media have been followed at different temperatures (25–40°C). The rate of disappearance of cerium(IV) in the title reaction increases sharply with increasing [C2H5OH] to a value independent of [C2H5OH] over a large range (0.2–1.0 mol dm?3) in which the rate law conforms to: where [Ru]T gives the total ruthenium (III) concentration. The values of 10?3kc and 10?3kd are 3.6 ± 0.1 dm3 mol?1 s?1 and 3.9 ± 0.2 s?1, respectively, at 40°C, I = 3.0 mol dm?3. The proposed mechanism involves the formation of ruthenium(III)? substrate complex which undergoes oxidation at the rate determining step by cerium(IV) to form ruthenium(IV)? substrate complex followed by the rapid red-ox decomposition giving rise to the catalyst and ethoxide radical which is oxidized by cerium(IV) rapidly. The mechanism is consistent with the existence of the complexes RuIII · (C2H5OH) and RuIII · (C2H5O?) and both are kinetically active. The overall bisulphate dependence conforms to: kobsd = A[Ru]T/{1 + C[HSO4?]} where A = 2.2 × 104 dm3 mol?1 s?1, C = 1.3 at 40°C, [H+] = 0.5 mol dm?3, and I = 3.0 mol dm?3. The observations are consistent with the Ce(SO4)2 as the kinetically active species. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号