首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrospun ZnO precursor nanofibers of average diameters 122±64 nm, 117±44 nm and 110±39 nm were fabricated by controlling the Al concentration of a polymeric solution. The resulting nanofibers were characterized by the XRD, SEM, EDS, TEM, XPS and PL. The electrospun Al-doped ZnO nanofiber films were polycrystalline and composed of densely packed grains, with crystallite size ranging from 28.7 nm, 25.7 nm, 25.4 nm to 20.4 nm corresponding to the atomic concentration of aluminum from 0, 1.6, 2.5 to 5.8 at.%. The incorporation of aluminum resulted in a decrease trend in the grain size and lattice parameter of the ZnO nanofiber films. The room temperature PL spectra of all samples show three different emissions, including UV (ultraviolet) emission with an obvious blue shift, Vis (visible) emission and NIR (near infrared) emission, the intensity of which decreases monotonically as the doping concentration is increased except for the highest doping level. The impurity content correlates with changes in the PL spectra, and the appropriate Al doping can improve the optical properties of ZnO nanofibers. The small size effect and Al-doping or the impurity incorporation should be responsible for the blue shift observation in Al-doped ZnO nanofiber films.  相似文献   

2.
We differentiated the effects of Cu films deposited on single crystalline a-,r-,and c-plane sapphire substrates upon graphene films synthesized with atmospheric pressure chemical vapor deposition(CVD).The data illustrate that the realization of high-crystalline Cu film is dependent not only on the crystallinity of underlying substrate,but also on the symmetric match of crystallographic geometry between metal film and substrate.We also systematically investigated the effects of PMMA removal on the Raman ID/IG and IG/I2D values of transferred graphene.The results reveal that different PMMA removal methods do not alter the ID/IG values;instead,the residue of PMMA increases the IG/I2D values and the thermal decomposition of PMMA leads to higher IG/I2D values than the removal of PMMA with acetone.The effects of PMMA removal on variations of the Raman spectra are also discussed.  相似文献   

3.
Mono- and bilayer Langmuir-Blodgett films based on phosphocholine and cholesterol and prepared by horizontal and vertical deposition are investigated by atomic force microscopy. It was found that bovine serum albumin (BSA) included at the stage of film formation. At the same time, isolation has a considerable effect on their structure. It was shown that the globular formation of nanostructures with heights of 4–7 nm occurs as a result of transferring lipids to a hydrophobic surface from a subphase containing BSA, indicating the reorganization of monolayers during protein isolation and inclusion in its composition.  相似文献   

4.
以氧化石墨烯(GO)、乙酸锌(Zn(CH3COO)2)和硫脲为原料,采用水热法成功制备了还原氧化石墨烯/ZnS(rGO/ZnS)复合材料,并将该材料用作锂离子电池负极。高导电性的 rGO可以为锂离子和电子的传输提供有效的路径,ZnS可以提供较高的理论比容量。rGO/ZnS复合材料在rGO与纳米级高度分散的类球形ZnS颗粒协同作用下展现了较好的嵌锂容量和循环性能。当GO质量浓度为2 mg·mL-1时制备的rGO/ZnS复合材料的倍率性能最好,循环稳定性最佳。  相似文献   

5.
以氧化石墨烯(GO)、乙酸锌(Zn(CH3COO)2)和硫脲为原料,采用水热法成功制备了还原氧化石墨烯/ZnS(rGO/ZnS)复合材料,并将该材料用作锂离子电池负极。高导电性的 rGO可以为锂离子和电子的传输提供有效的路径,ZnS可以提供较高的理论比容量。rGO/ZnS复合材料在rGO与纳米级高度分散的类球形ZnS颗粒协同作用下展现了较好的嵌锂容量和循环性能。当GO质量浓度为2 mg·mL-1时制备的rGO/ZnS复合材料的倍率性能最好,循环稳定性最佳。  相似文献   

6.
7.
This work investigated the effect of Potassium Permanganate (KMnO4) on graphene oxide (GO) properties, especially on electrical properties. The GO thin films were deposited on a glass substrate using drop casting technique and were analysed by using various type of spectroscopy (e.g. Scanning Electron Microscopy (SEM), Ultra- Violet Visible (UV–VIS), Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), optical band gap, Raman Spectroscopy). Furthermore, the electrical experiments were carried out by using current–voltage (I-V) characteristic. The GO thin film with 4.5 g of KMnO4 resulted in higher conductivity which is 3.11 × 10?4 S/cm while GO with 2.5 g and 3.5 g of KMnO4 achieve 2.47 × 10?9 S/cm and 1.07 × 10?7 S/cm, respectively. This further affects the morphological (SEM), optical (band gap, UV–Vis, FTIR, and Raman), and crystalline structural (XRD) properties of the GO thin films. The morphological, elemental, optical, and structural data confirmed that the properties of GO is affected by different amount of KMnO4 oxidizing agent, which revealed that GO can potentially be implemented for electrical and electronic devices.  相似文献   

8.
The effects of electrostatic forces (EF), control on the morphology, structure, and electrochemical properties of polyaniline, PANI/graphene oxide (GO), nanocomposites prepared by interfacial electropolymerization (IEP), are studied in this work. FESEM images showed that the IEP method can form the PANI/GO nanocomposites when the EF-control has been found mainly on the PANI nanofibers formation and growth on the GO film surface; and the EF-enhancement can form PANI nanofibers with small nano-diameter, longer length, uniform morphology, high order and well orientation as compared with the EF-reduction-formed sample. The EF-enhancement-formed PANI/GO nanocomposite showed improved electrochemical properties than that of the EF-reduction-formed sample due to the EF-enhancement that enhances the C–N structure for PANI/GO nanocomposite.  相似文献   

9.
Novel ternary nanocomposites films of Polypyrrole/copper/graphene oxide (PPy/Cu/GO) showed enhanced optical and electronic properties. In this study, PPy/Cu/GO films were synthesized with different GO load (0.0, 0.4, 0.6, and 0.8 wt%) using electrochemical deposition technique. The structural, optical and electrical properties of the composites were evaluated using X-Ray Diffraction (XRD) spectroscopy, UV–visible spectroscopy, Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), and four-point probe methods. XRD results reveal that the GO was completely intercalated and dispersed uniformly in the nanocomposites. The results also revealed that the nanocomposite films are crystalline in nature, with distinct peaks corresponding to indexed miller indices. UV-visible analysis revealed that all of the nanocomposites showed good UV absorbance which was significant in the UV–Vis region of ≈450 nm. The energy band gap decreased with increase in GO load and was found within 3.46 to 2.25 eV, across the range of GO load which fall within the range of energy band gap for photovoltaic applications. The SEM results revealed that the nanocomposite films showed unevenly shaped structures with porous surface which increases with increasing GO loading, while the EDX result revealed the presence of carbon, oxygen nitrogen and copper as fundamental elements deposited. The nanocomposites' four-point probe analysis revealed slight increase in conductivity with low GO content. The incorporation of Cu and GO nanoparticles in PPy matrix provides a better balance and thus improved the photovoltaic properties of PPy/Cu/GO making them suitable for photovoltaic applications.  相似文献   

10.
The optical interference effect has enabled the visualization of thin layers, even monolayers, of graphene by simple optical microscopy. In this study, we have controlled the optical interference effect by changing the thickness and types of dielectric films, i.e. SiO2 and Si3N4. By investigating differences in RGB parameters between the graphene oxide layer and the dielectric layer, conditions for the highest visibility of the graphene oxide layer were determined. We also studied colors as a function of graphene oxide layer thickness and dielectric layer thickness. These color patterns can be effectively presented as two-dimensional color charts. When comparing SiO2 and Si3N4 as dielectric layers, each layer was found to exhibit different interference fringe patterns, which is due to a mismatch of optical properties between the material layer and dielectric layer. The effects of optical properties (n, k) of the material layer on interference colors were also investigated.  相似文献   

11.
12.
Polycarbonate (PC)/graphene oxide (GO) composites with different GO reduction time and PC types were prepared by using a twin screw extruder at 260 °C after solution mixing with chloroform. The chemical reaction degree of PC/GO composites with GO reduction time was confirmed by C–H stretching peak at 3000 cm ?1, and the chemical reaction degree decreased with GO reduction time. The slope for storage (G′) versus loss (G″) modulus plot decreases with an increase in heterogeneous property of the polymer melts. So we can check the GO dispersion of the PC/GO composites using by the slop for G′–G″ plot. According to the G′–G″ slopes for PC/GO composite with GO reduction time, GO was well dispersed within PC matrix when the reduction time decreased. It was re‐confirmed by atomic force microscope (AFM) results. Based on the degradation temperature by Thermogravimetric analysis, G′–G″ slopes, and surface roughness by AFM, the branched PC was better than linear PC for the GO dispersion within PC matrix. The fact was also confirmed by tensile test results that the Young's modulus increased with the improvement of GO dispersion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
We have conducted a comparative study of the synthesis conditions for mesoporous materials and films based on tin dioxide in the presence of different types of templates, and we have studied their thermal stability and sorption properties. We demonstrate the advantage of using alcoholic reaction media and nonionic templates (triblock copolymers Pluronic-123 and Pluronic-127) to obtain thin films of mesoporous SnO2 with relatively high parameters for the porous structure (Vmeso = 0.15 cm3/g, SBET = 147 m2/g) and cassiterite crystallite sizes down to 2.7 nm, significantly smaller than the thickness of the walls.  相似文献   

14.
The samples of polyvinylidene fluoride/trifluoroethylene with different amount of graphene oxide dopant 5, 10, 15, 20 and 25% were fabricated and their phase situation were estimated. Moreover the para–ferroelectric phase transition was studied using the dielectric spectroscopy technique. The results of dielectric measurements allowed to perform Cole–Cole analysis and to estimate the activation energy of the films. On the basis of these results the influence of graphene oxide dopant on structure and properties of polyvinylidene fluoride/trifluoroethylene was discussed.  相似文献   

15.
Site-specific functionalization of oxide nanostructures gives rise to novel optical and chemical surface properties. In addition, it can provide deeper insights into the electronic surface structure of the associated materials. We applied chemisorption of molecular hydrogen, induced by ultraviolet (UV) light, followed by vacuum annealing to MgO nanocubes to selectively decorate three-coordinated oxygen ions (oxygen corner sites, for simplicity) with protons. Fully dehydroxylated nanocubes exhibit 3.2 +/- 0.1 eV photoluminescence induced by 4.6 eV light, where both emission and absorption are associated with three-coordinated oxygen sites. We find that partially hydroxylated nanocubes show an additional photoluminescence feature at 2.9 +/- 0.1 eV. Interestingly, the excitation spectra of the 2.9 and 3.2 eV emission bands, associated with protonated and nonprotonated oxygen corner sites, respectively, nearly coincide and show well-pronounced maxima at 4.6 eV in spite of a significant difference in their local atomic and electronic structures. These observations are explained with the help of ab initio calculations, which reveal that (i) the absorption band at 4.6 eV involves four-coordinated O and Mg ions in the immediate vicinity of the corner sites and (ii) protonation of the three-coordinated oxygen ions eliminates the optical transitions associated with them and strongly red-shifts other optical transitions associated with neighboring atoms. These results demonstrate that the optical absorption bands assigned to topological surface defects are not simply determined by the ions of lowest coordination number but involve contributions due to the neighboring atoms of higher coordination. Thus, we suggest that the absorption band at 4.6 eV should not be regarded as merely a signature of the three-coordinated O2- ions but ought to be assigned to corners as multiatomic topological features. Our results also suggest that optical absorption signatures of protonated and nonprotonated sites of oxide surfaces can be remarkably similar.  相似文献   

16.
Polydiacetylene (PDA) Langmuir films (LFs) are a unique class of materials that couple a highly aligned conjugated backbone with tailorable pendant side groups and terminal functionalities. The films exhibit chromatic transitions from monomer to blue polymer and finally to a red phase that can be activated optically, thermally, chemically, and mechanically. The properties of PDA LFs are strongly affected by the presence of metal cations in the aqueous subphase of the film due to their interaction with the carboxylic head groups of the polymer. In the present study the influence of divalent cadmium, barium, copper, and lead cations on the structural, morphological, and optical properties of PDA LFs was investigated by means of surface pressure-molecular area (π-A) isotherms, atomic force microscopy, optical absorbance, and Raman spectroscopy. The threshold concentrations for the influence of metal cations on the film structure, stability, and phase transformation were determined by π-A analyses. It was found that each of the investigated cations has a unique influence on the properties of PDA LFs. Cadmium cations induce moderate phase transition kinetics with reduced domain size and fragmented morphology. Barium cations contribute to stabilization of the PDA blue phase and enhanced linear strand morphology. On the other hand, copper cations enhance rapid formation of the PDA red phase and cause fragmented morphology of the film, while the presence of lead cations results in severe perturbation of the film with only a small area of the film able to be effectively polymerized. The influence of the metal cations is correlated with the solubility product (K(sp)), association strength, and ionic-covalent bond nature between the metal cations and the PDA carboxylic head groups.  相似文献   

17.
Lead-germanate materials are attractive systems for photonics applications. In this context, amorphous lead-germanate films were grown by pulsed-laser deposition at different substrate temperatures and oxygen pressures using a glassy target of composition 0.4PbO-0.6GeO(2). Optical and infrared measurements showed that the substrate temperature has a strong influence on the optical quality and stability of the deposited films. An accurate characterization of films was achieved by comparing experimental and simulated transmittance spectra in the infrared, and allowed to probe the structural evolution and variations in composition as a function of oxygen pressure. The results showed that the difference in reactivity of lead and germanium toward oxygen in the laser-produced plasma allows for composition adjustments in the lead-germanate films by varying the oxygen pressure in the deposition chamber.  相似文献   

18.
Lipid membranes composed of phosphatidyl choline and cholesterol were interfaced to polyacrylamine hydrogen by Langmuir—Blodgett thin-film deposition. The extent of lipid adsorption to the gel surface was critically dependent on the hydration of the polymer as determined by contact angle measurements. Some electrochemical transducers incorporating the deposited membrane/gel structure responded positively to phloretin and valinomycin. Limitations to the construction of this device are discussed.  相似文献   

19.
Vanadium dioxide (VO2) films were synthesized on mica substrates by a polymer-assisted deposition method, followed by rapid annealing with different annealing temperatures. The crystalline structure and morphology of the films were investigated by XRD and FE-SEM, and their phase transition properties were studied by in situ FT-IR. The results indicated that the annealing temperature affected the crystalline structure and morphology of the films remarkably, which then resulted in varied phase transition properties. In particular, the films annealed at higher temperature showed more polycrystalline structure, increased particle size and reduced phase transition intensity. But the films exhibited the similar hysteresis temperature width with increasing annealing temperature.  相似文献   

20.
Polypyromellitimides were prepared by the reaction of di(4-aminophenyl) ether (E)/di (4-aminophenyl) methane (M), and pyromellitic dianhydride in dimethylformamide, followed by thermal cyclization in a nitrogen atmosphere. Copolyimides were obtained by taking different molar ratios of diamines in the initial monomer feed. Differential scanning calorimetric, thermogravimetric analysis, and thermally stimulated current studies were carried out on these samples. It was concluded that the dielectric relaxation in these copolymers is due to trapping of the charge carriers. The dielectric relaxation parameters and activation energies were also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号