首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of solvent (DMF, MeCN, and water) and R1, R2 substituent nature on the formal oxidation potential (E°´) of 4-R1,R2-2,2,6,6-tetramethylpiperidine 1-oxyls (1a—f) on a glass carbon electrode was studied by cyclic voltammetry. It was shown that for all the solvents the observed dependence had the form E°´ = ρ″σ″ + b, where σ″ is the substituent constant. The b values decreased with an increase of the solvent solvating ability, while the values ρ″ are similar for all the solvents, surpassing the corresponding values for nitroxyls of the imidazoline series with substituents at position 3, which can be interpreted as an abnormally strong influence of the substituent remote from the reaction center in 1a—f. The experimental values E°´ were linearly correlated with the reaction free energy values (ΔG) calculated by DFT B3LYP and MP2 for the gas phase contribution and by HF/PCM for the contribution of solvation effects. When applying the B3LYP and the HF/PCM approaches in combination, the dependence of E°´ on ΔG for all the considered solvents was described by a linear correlation equation with a slope close to unity and a constant term which was close to the theoretical value of the absolute potential of the reference electrode used.  相似文献   

2.
Temperature dependences of the heat capacity of new zincate-manganites of LaM2IIZnMnO6 (MII = Mg, Ca, Sr, Ba) composition are studied via experimental calorimetry in the interval of 298.15–673 K. It is found that all compounds have λ-shape effects on the curve of dependence Cp° ~ ?(T) with respect to phase transitions of the second kind. Equations for the temperature dependence of the heat capacity are derived with allowance for phase transition temperatures, and thermodynamic functions H°(T) ? H°(298.15), S°(T) and Φxx(T) are calculated on the basis of experimental data on Cp°(T) and the calculated S°(298.15) value.  相似文献   

3.
A multiwalled carbon nanotube-modified carbon paste electrode (MWCNT-PE) was used for determination of 1,4-diazabicyclo[2,2,2]octane (DABCO or TEDA) in 0.1 M phosphate buffer solutions (pH 10.25). Cyclic voltammetry(CV) and differential pulse voltammetry (DPV) techniques were used to investigate the electrocatalytic oxidation of DABCO at the surface of modified electrode. The results shown that the oxidation peak current of DABCO at the surface of MWCNT-PE was 2.40 times larger than that at the bare electrode. The experimental formal redox potential (E°') of DABCO was obtained 986 mV versus SHE (Standard Hydrogen Electrode). Density functional theory (DFT) method at B3LYP/6-311++G** level of theory and a conductor-like Polarizable Continuum Model (CPCM) was used to calculate the E°' values. The highest occupied molecular orbital (E HOMO), lowest unoccupied molecular orbital (E LUMO) and some thermodynamic parameters such as Gibbs free energy of DABCO and its oxidation forms were calculated. Both direct and indirect methods were used to calculate the theoretical standard electrode potential for DABCO and the results were found to be in good agreement with the experimental values.  相似文献   

4.
Heat capacity of NdVO4 was determined in the temperature range of 384–859 K using differential scanning calorimetry. The thermodynamic functions (H°(T)–H°(384 K), S°(T)–S°(384 K), and Φ°) of neodymium orthovanadate were calculated using the experimental Cp = f(T) values. The structure of NdVO4 was studied at 298 and 973 K.  相似文献   

5.
A new approach is proposed for the estimation of boiling points (T b) of organic compounds at reduced pressure from their values at atmospheric pressure based on the application of a recurrent relation: T b (log P + Δlog P) = aT b (log P) + b. Estimation of coefficients in this relation for the compounds different by their chemical nature gives the following average values: a = 1.126, b = ?41.7. Successive application of this relation with Δlog P = 1 (that corresponds to 10-fold decrease in pressure) allows estimation of the T b values at the pressure values of 100, 10 and 1 torr from the value of T b (760 torr) by simple arithmetic calculation with an average accuracy about 8°C.  相似文献   

6.
Density functional theory was employed for calculation of HS(CH2)mSH (m = 1–8) and its derivatives at B3LYP method at 6-31++g (d,p) level. Using eigenvalues of LUMO and HOMO for HS(CH2)mSH, the standard electrode potentials were estimated by a stepwise multiple regression techniques (MLR), and obtained as E° = 1.500 + 7.167 × 10–3 HOMO–0.229 LUMO with high correlation coefficients of 0.973 and F values of 43.973.  相似文献   

7.
The thermodynamic properties of amorphous polyphenylquinoxaline in the temperature range of 6 to 570 K are studied via precision adiabatic vacuum calorimetry and differential scanning calorimetry. The thermodynamic characteristics of glass transition are determined. Standard thermodynamic functions C°p, H°(T) ? H°(0), S°(Т) ? S°(0), and G°(T) ? H°(0) in the range of T → 0 to 570 K and the standard entropy of formation at T = 298.15 K are calculated. The low-temperature (T ≤ 50 K) heat capacity is analyzed using a multifractal model for the processing of heat capacity, fractal dimension D values are determined, and conclusions on the topological structure of the compound are drawn.  相似文献   

8.
The redox reaction of N-protonated noradrenalin (NA) is a two-proton-two-electron reaction in aqueous solution. NA can be oxidated to N-protonated noradrenalin quinone (NAquinone). The standard electrode potential (E0) value of NA/NAquinone couples is obtained experimentally with cyclic voltammetry (CV) and theoretically with two methods at B3LYP/6-311++G(d, p) level. The theoretical E0 value of NA/NAquinone couples is in good agreement with experimental ones and close to each other. Glycine (Gly) can form hydrogen bonds with NA in physiological environment. The E0 values of NA–Gly/NAquinone–Gly couples are predicted experimentally and theoretically. Hydrogen bond interaction weakens the electrondonation abilities of NA.  相似文献   

9.
The nanosized LiNiPO4 was successfully synthesized by a solid-state reaction between the new Ni3(PO4)2·8H2O precursor and Li3PO4 at 700 °C in air atmosphere. The formation of LiNiPO4 was generated via three thermal decomposition steps. The samples were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, atomic absorption/atomic emission spectrophotometers, and thermogravimetric/differential thermal gravimetric/differential thermal analysis techniques. The activation energy (Eα) values of the three steps were calculated by Vyazovkin method and determined to be 90.39?±?5.79, 197.81?±?7.46, and 308.66?±?12.03 kJ mol?1, respectively. The average Eα values from this method are very close to Eα from KAS method. The most probable mechanism functions g(α) of three steps were evaluated by using the masterplots method and found to be the F1/3 (first step), F3/2 (second step), and D4 (final step), respectively. The pre-exponential factors (A) values of three steps were obtained based on the Eα and g(α). The kinetic triplet parameters of the formation of LiNiPO4 from the new precursor are reported in the first time.  相似文献   

10.
Temperature dependences of the heat capacity of cobalt manganites NdM2 I CoMnO5 (MI = Li, Na, and K) are studied by means of dynamic calorimetry in the range of 298.15?673 K. It is found that λ-shaped effects are observed on the C p ° ~ f (T) curve of cobalt manganites, due probably to second order phase transitions. Based on the experimental data, equations for the temperature dependences of the heat capacity of cobalt manganite are derived with allowance for the temperatures of phase transitions. The values of thermodynamic functions Н°(T)–Н°(298.15), S°(T), and Фхх(T) are calculated.  相似文献   

11.
The temperature dependence of the heat capacity of a first-generation liquid crystal carbosilane dendrimer with methoxyphenyl benzoate end groups is studied for the first time in the region of 6–370 K by means of precision adiabatic vacuum calorimetry. Physical transformations are observed in this interval of temperatures, and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions Cp°(T), H°(T) ? H°(0), S°(T) ? S°(0), and G°(T) ? H°(0) are calculated from the obtained experimental data for the region of Т → 0 to 370 K. The standard entropy of formation of the dendrimer in the partially crystalline state at Т = 298.15 K is calculated, and the standard entropy of the hypothetic reaction of its synthesis at this temperature is estimated. The thermodynamic properties of the studied dendrimer are compared to those of second- and fourth-generation liquid crystal carbosilane dendrimers with the same end groups studied earlier.  相似文献   

12.
The Cu, Ni, and Со complexes based on the following new azomethine compounds containing azobenzene groups in the ortho- or para-positions of the amine fragment are synthesized: 2-allyl-6-[(E)-[4-(E)-phenylazophenyl]iminomethyl]phenol (HL1), 2-allyl-6-[(E)-[4-methyl-2-[(E)-phenylazo]-p-tolylazo] iminomethyl]phenol (HL2), 5-methoxy-2-[(E)-[4-[(E)-phenylazo]phenyl]iminoethyl]phenol (HL3), and 5-methoxy-2-[(E)-[4-methyl-2-[(E)-p-tolylazo]phenyl]iminomethyl]phenol (HL4). The structures of the complexes are determined by the data of IR and 1Н NMR spectroscopy (for the azomethine compounds), X-ray absorption spectroscopy, and magnetochemistry. The coordination centers of all Cu complexes have a distorted square structure. A direct dependence of the geometry of the coordination polyhedron on the position of azobenzene groups in the amine fragments of the ligands is found for the Ni and Co complexes. The octahedral environment of the nickel and cobalt ions takes place in the case of the ortho-position of the amine fragment, whereas the square environment for the Ni complexes or the tetrahedral environment for the Co complexes is observed at the para-position. The molecular structures of two azomethines HL1 and HL4 are determined by X-ray diffraction analysis (CIF files CCDC nos. 1552836 (HL1) and 1552837 (HL4)).  相似文献   

13.
X-ray structural analysis has been performed for two complex compounds: Cu(en)2(o-HB)2H2O (I) (a = 16.873(4) Å, b = 8.713(2) Å, c = 14.803(3) Å, β = 91.15(2)°, V = 2175.8(8) Å3, C2/c, Z = 4, R(F) = 0.0263, 1516 reflections with I > 3σ (I)) and [Cu(en)2(OH2)2]2+(o-AB?)2 (II) (a = 7.488(5) Å, b = 22.122(8) Å, c = 7.856(5) Å, β = 118.77(2)°, V = 1140.7(11) Å3, P21/n, Z = 2, R(F) = 0.0432, 1684 reflections with I > 3σ(I)) synthesized under identical conditions (en is ethylenediamine, o-HB is o-hydroxybenzoate, and o-AB is o-aminobenzoate). Although the compounds were assumed to have similar structures and the Cu-Lig bond lengths and the cis and trans angles are acceptable for an octahedral structure, the geometric parameters of o-HB suggest that the copper atom has a plane square environment.  相似文献   

14.
Experimental results on the coordinated molecular decomposition of RF fluoroalkanes to olefin and HF are analyzed using the model of intersecting parabolas (IPM). The kinetic parameters are calculated to allow estimates of the activation energy (E) and rate constant (k) of these reactions, based on enthalpy and IPM algorithms. Parameters E and k are found for the first time for eight RF decomposition reactions. The factors that affect activation energy E of RF decomposition (the enthalpy of the reaction, the electronegativity of the atoms of reaction centers, and the dipole–dipole interaction of polar groups) are determined. The values of E and k for reverse reactions of addition are estimated.  相似文献   

15.
Four new low melting salts, “Ionic Liquids” consisting of the [CrIII(NCS)4(Phen)]? complex monoanion and imidazolium based cations A, with A = 1-ethyl-3-methylimidazolium (EMIm), 1-butyl-3-methylimidazolium (BMIm), 1,3-dimethyl-2,4,5-triphenylimidazolium (DML), and 1,2,3,4,5-pentamethyl-imidazolium (PMIm), were investigated. Single-crystal X-ray investigations established the structures of the four compounds. (EMIm)[Cr(NCS)4(Phen)] (I): triclinic, \(P\bar 1\), a = 8.1382(6), b = 10.4760(8), c = 16.003(1) Å, α = 90.330(4)°, β = 94.759(4)°, γ = 107.305(4)°, Z = 2, R 1(F)/wR 2(F 2) = 0.0650/0.1770; (BMIm)[Cr(NCS)4(Phen)] (II): triclinic, \(P\bar 1\), a = 8.5545(4), b = 9.8620(4), c = 16.6762(6) Å, α = 92.503(2)°, β = 97.517(2)°, γ = 91.249(2)°, Z = 2, R 1(F)/wR 2(F 2) = 0.0393/0.0848; (DML)[Cr(NCS)4(Phen)] · C3H6O (III): triclinic, \(P\bar 1\), a = 11.0475(9), b = 13.589(1), c = 14.582(1) Å, α = 83.013(4)°, β = 87.116(4)°, γ = 70.333(5)°, Z = 2, R 1(F)/wR 2(F 2) = 0.0407/0.1023; (PMIm)[Cr(NCS)4(Phen)] · C3H6O (IV): orthorhombic, Pbca, a = 17.379(1), b = 16.514(1), c = 22.304(1) Å, Z = 8, R 1(F)/wR 2(F 2) = 0.0460/0.1107 (in addition III and IV contain co-crystallized acetone molecules). Each compound was characterized by elemental analysis, NMR, IR, und UV-Vis spectroscopy. Magnetic properties were derived from NMR investigations (EVANS method). All four compounds are paramagnetic with effective magnetic moments of spin-only CrIII. Melting points were obtained from DSC measurements. All melting points are higher than required for “Ionic Liquids”, but nevertheless “low” for molten salts.  相似文献   

16.
The reaction between 4-methylpyridine, alkyl propiolates, and secondary phosphine oxides proceeded as N-vinylation-C-phosphorylation with stereo- and regioselective formation of (E)-N-ethenyl-C2- phosphoryl-1,2-dihydropyridines [when using bis(2-phenylethyl)phosphine oxide] or (E)-N-ethenyl-C4- phosphoryl-1,4-dihydropyridines (when using diphenylphosphine oxide). The process occurred at 60–62°C within 3 h to give functional dihydropyridines in 40–82% yield. Under similar conditions, bis(2-phenylethyl) phosphine sulfide and selenide reacted with alkyl propiolates preferably by nucleophilic PH-monoaddition at the triple bond.  相似文献   

17.
The heat capacities of first- and third-generation carbosilane dendrimers with terminal phenyldioxolane groups are studied as a function of temperature via vacuum and differential scanning calorimetry in the range of 6 to 520 K. Physical transformations that occur in the above temperature range are detected and their standard thermodynamic characteristics are determined and analyzed. Standard thermodynamic functions Cpο(T), [H°(T) ? H°(0)], [S°(T) ? S°(0)], and [G°(T) ? H°(0)] in the temperature range of T → 0 to 520 K for different physical states and the standard entropies of formation of the studied dendrimers at T = 298.15 K are calculated, based on the obtained experimental data.  相似文献   

18.
Two new copper(II) complexes (I, II) with benzimidazole ligands have been synthesized and characterized by elemental analysis and X-ray single-crystal diffraction. Compound I is triclinic, P \(\bar 1\), a = 11.4205(6), b = 13.0956(7), c = 18.2305(9) Å, α = 85.960(1)°, β = 80.388(0)°, γ = 77.517(1)°, V = 2623.0(2) Å3, Z = 2; compound II is monoclinic, C2/c, a = 24.2684(11), b = 17.5247(8), c = 19.3149(15) Å, β = 122.710(1)°, V = 6911.9(7) Å3, Z = 4. In both compounds, Cu(II) atoms are coordinated by four benzimidazole nitrogen atoms in a slightly distorted tetrahedral fashion.  相似文献   

19.
Complex salts of the composition [Co(NH3)6](ReO4)3·2H2O (I), [Co(en)3](ReO4)3 (II), [Co(NH3)5H2O](ReO4)3·2H2O (III), and [Co(NH3)5Cl](ReO4)2·0.5H2O (IV) are obtained. Their crystal structures are determined by single crystal XRD. Crystallographic characteristics: (I) a = 9.9797(3) Å, b = 12.6994(3) Å, c = 14.7415(4) Å, β = 102.870(1)°, C2/c space group; (II) a = 8.0615(3) Å, b = 8.4483(4) Å c = 8.8267(4) Å, α = 61.923(2)°, β = 89.552(2)°, γ = 72.295(2)°, P1 space group; (III) a = 8.0086(4) Å, b = 12.9839(6) Å, c = 17.5122(7) Å, β=91.858(1)°, P21/n space group; (IV) a = 14.9446(3) Å, b = 14.6562(4) Å, c = 12.2434(4) Å, Cmc21 space group.  相似文献   

20.
Compounds Y2SiO4Q (Q = S, Se) are obtained by the interaction of oxides and elemental substances in cesium chloride flux. The structures of these compounds are determined by the single crystal XRD analysis. These compounds isostructural and crystallize in the space group Pbcm with the following parameters: Y2SiO4S (I) a = 6.0462(8) Å, b = 6.8976(9) Å, c = 10.6558(13) Å, V = 444.39(10) Å3; Y2SiO4Se (II) a = 5.9935(7) Å, b = 6.9216(8) Å, c = 10.7688(12) Å, V = 446.74(9) Å3. The measured fluxing points are 1650±15 °С for I and 1850±15 °С for II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号